Materials with the same elastic modulus E and representative stress and strain (σr,εr) present similar indentation-loading curves, whatever the value of strain hardening exponent n. Based on this definition, a goo...Materials with the same elastic modulus E and representative stress and strain (σr,εr) present similar indentation-loading curves, whatever the value of strain hardening exponent n. Based on this definition, a good approach was proposed to extract the plastic properties or constitutive equations of metals from nanoindentation test combining finite element simulation. Firstly, without consideration of strain hardening, the representative stress was determined by varying assumed representative stress over a wide range until a good agreement was reached between the computed and experimental loading curves. Similarly, the corresponding representative strain was determined with different hypothetical values of strain hardening exponent in the range of 0-0.6. Through modulating assumed strain hardening exponent values to make the computed unloading curve coincide with that of the experiment, the real strain hardening exponent was acquired. Once the strain hardening exponent was determined, the initial yield stress ay of metals could be obtained by the power law constitution. The validity of the proposed methodology was verified by three real metals: AISI 304 steel, Fe andA1 alloy.展开更多
The mechanical properties of limestone such as the stress-strain curve, the variable characteristics of peak strength and the modulus of elasticity of limestone were studied under the action of temperatures ranging fr...The mechanical properties of limestone such as the stress-strain curve, the variable characteristics of peak strength and the modulus of elasticity of limestone were studied under the action of temperatures ranging from room temperature to 800 °C.Our results show that:1) the temperature has not clear effect on the mechanical properties of limestone from room temperature to 600 °C.However, the mechanical properties of limestone deteriorate rapidly when the temperature is above 600 °C.In this case, the peak stress and modulus of elasticity decrease rapidly.When the temperature reaches 800 °C, the entire process, showing the stress-strain curve is displayed indicating an obvious state of plastic-deformation;2) the failure mode of limestone shows the breakdown of tensile strength from room temperature to 600 °C, as well as the compress shearing damage over 600 °C;3) combining our test results with the concept of thermal damage, a thermal damage equation was derived.展开更多
To investigate the spring-back behavior of dual-phase (DP) steel, V-shape spring-back experiments with different bending angles, relative bending radii and blank holding forces were carried out in this paper. It is ...To investigate the spring-back behavior of dual-phase (DP) steel, V-shape spring-back experiments with different bending angles, relative bending radii and blank holding forces were carried out in this paper. It is concluded that with the increase of V-shape angle or blank holding force, the spring-back of DP steel sheets decreases; while raising fiIlet radius of punch, which has the most apparent effects on spring-back, advances spring-back angle. Among DP590, DP780 and DP980, higher strength yields more notable spring-back due to larger elastic deformation. The difference of spring-back among these materials is relevant with the microstructure and mechanical properties. The total elastic deformation approximately equals the ratio of the strength corresponding to the applied load to the modulus of elasticity.展开更多
基金Project (51171125) supported by the National Natural Science Foundation of China Project (20110321051 ) supported by the Science and Technology Key Project of Shanxi Province, China
文摘Materials with the same elastic modulus E and representative stress and strain (σr,εr) present similar indentation-loading curves, whatever the value of strain hardening exponent n. Based on this definition, a good approach was proposed to extract the plastic properties or constitutive equations of metals from nanoindentation test combining finite element simulation. Firstly, without consideration of strain hardening, the representative stress was determined by varying assumed representative stress over a wide range until a good agreement was reached between the computed and experimental loading curves. Similarly, the corresponding representative strain was determined with different hypothetical values of strain hardening exponent in the range of 0-0.6. Through modulating assumed strain hardening exponent values to make the computed unloading curve coincide with that of the experiment, the real strain hardening exponent was acquired. Once the strain hardening exponent was determined, the initial yield stress ay of metals could be obtained by the power law constitution. The validity of the proposed methodology was verified by three real metals: AISI 304 steel, Fe andA1 alloy.
基金Projects 50490273 supported by the National Natural Science Foundation of China2007CB209400 by the National Basic Research Program of China+1 种基金08KJD130003 by the Basic Research Program of University in Jiangsu ProvinceXKY2007219 by Xuzhou Institute of Technology
文摘The mechanical properties of limestone such as the stress-strain curve, the variable characteristics of peak strength and the modulus of elasticity of limestone were studied under the action of temperatures ranging from room temperature to 800 °C.Our results show that:1) the temperature has not clear effect on the mechanical properties of limestone from room temperature to 600 °C.However, the mechanical properties of limestone deteriorate rapidly when the temperature is above 600 °C.In this case, the peak stress and modulus of elasticity decrease rapidly.When the temperature reaches 800 °C, the entire process, showing the stress-strain curve is displayed indicating an obvious state of plastic-deformation;2) the failure mode of limestone shows the breakdown of tensile strength from room temperature to 600 °C, as well as the compress shearing damage over 600 °C;3) combining our test results with the concept of thermal damage, a thermal damage equation was derived.
文摘To investigate the spring-back behavior of dual-phase (DP) steel, V-shape spring-back experiments with different bending angles, relative bending radii and blank holding forces were carried out in this paper. It is concluded that with the increase of V-shape angle or blank holding force, the spring-back of DP steel sheets decreases; while raising fiIlet radius of punch, which has the most apparent effects on spring-back, advances spring-back angle. Among DP590, DP780 and DP980, higher strength yields more notable spring-back due to larger elastic deformation. The difference of spring-back among these materials is relevant with the microstructure and mechanical properties. The total elastic deformation approximately equals the ratio of the strength corresponding to the applied load to the modulus of elasticity.