Improving the prediction accuracy of wind power is an effective means to reduce the impact of wind power on power grid.Therefore,we proposed an improved African vulture optimization algorithm(AVOA)to realize the predi...Improving the prediction accuracy of wind power is an effective means to reduce the impact of wind power on power grid.Therefore,we proposed an improved African vulture optimization algorithm(AVOA)to realize the prediction model of multi-objective optimization least squares support vector machine(LSSVM).Firstly,the original wind power time series was decomposed into a certain number of intrinsic modal components(IMFs)using variational modal decomposition(VMD).Secondly,random numbers in population initialization were replaced by Tent chaotic mapping,multi-objective LSSVM optimization was introduced by AVOA improved by elitist non-dominated sorting and crowding operator,and then each component was predicted.Finally,Tent multi-objective AVOA-LSSVM(TMOALSSVM)method was used to sum each component to obtain the final prediction result.The simulation results show that the improved AVOA based on Tent chaotic mapping,the improved non-dominated sorting algorithm with elite strategy,and the improved crowding operator are the optimal models for single-objective and multi-objective prediction.Among them,TMOALSSVM model has the smallest average error of stroke power values in four seasons,which are 0.0694,0.0545 and 0.0211,respectively.The average value of DS statistics in the four seasons is 0.9902,and the statistical value is the largest.The proposed model effectively predicts four seasons of wind power values on lateral and longitudinal precision,and faster and more accurately finds the optimal solution on the current solution space sets,which proves that the method has a certain scientific significance in the development of wind power prediction technology.展开更多
TiC particles reinforced Ni-based alloy composite coatings were prepared on 7005 aluminum alloy by plasma spray. The effects of load, speed and temperature on the tribological behavior and mechanisms of the composite ...TiC particles reinforced Ni-based alloy composite coatings were prepared on 7005 aluminum alloy by plasma spray. The effects of load, speed and temperature on the tribological behavior and mechanisms of the composite coatings under dry friction were researched. The wear prediction model of the composite coatings was established based on the least square support vector machine (LS-SVM). The results show that the composite coatings exhibit smaller friction coefficients and wear losses than the Ni-based alloy coatings under different friction conditions. The predicting time of the LS-SVM model is only 12.93%of that of the BP-ANN model, and the predicting accuracies on friction coefficients and wear losses of the former are increased by 58.74%and 41.87%compared with the latter. The LS-SVM model can effectively predict the tribological behavior of the TiCP/Ni-base alloy composite coatings under dry friction.展开更多
Commonly used grain yield forecasting models were briefly reviewed, and a yield prediction model of irrigation district was established based on least squares support vector machines (LS-SVM). The grain yield in irr...Commonly used grain yield forecasting models were briefly reviewed, and a yield prediction model of irrigation district was established based on least squares support vector machines (LS-SVM). The grain yield in irrigation district was analog calculated. And the test samples were used to compare with gray prediction, and neural network model. The maximum predicted error of least squares SVM was 7.12%, with an average error of 4.81%. The results showed that LS-SVM model has high prediction accuracy and strong generalization ability. So it could be used as a new method for irrigation district yield prediction展开更多
A vision-based color analysis system was developed for rapid estimation of copper content in the secondary copper smelting process. Firstly, cross section images of secondary copper samples were captured by the design...A vision-based color analysis system was developed for rapid estimation of copper content in the secondary copper smelting process. Firstly, cross section images of secondary copper samples were captured by the designed vision system. After the preprocessing and segmenting procedures, the images were selected according to their grayscale standard deviations of pixels and percentages of edge pixels in the luminance component. The selected images were then used to extract the information of the improved color vector angles, from which the copper content estimation model was developed based on the least squares support vector regression (LSSVR) method. For comparison, three additional LSSVR models, namely, only with sample selection, only with improved color vector angle, without sample selection or improved color vector angle, were developed. In addition, two exponential models, namely, with sample selection, without sample selection, were developed. Experimental results indicate that the proposed method is more effective for improving the copper content estimation accuracy, particularly when the sample size is small.展开更多
A thrust estimator with high precision and excellent real-time performance is needed to mitigate perfor- mance deterioration for future aero-engines. A weight least squares support vector regression is proposed using ...A thrust estimator with high precision and excellent real-time performance is needed to mitigate perfor- mance deterioration for future aero-engines. A weight least squares support vector regression is proposed using a novel weighting strategy. Then a thrust estimator based on the proposed regression is designed for the perfor- mance deterioration. Compared with the existing weighting strategy, the novel one not only satisfies the require- ment of precision but also enhances the real-time performance. Finally, numerical experiments demonstrate the effectiveness and feasibility of the proposed weighted least squares support vector regression for thrust estimator. Key words : intelligent engine control; least squares ; support vector machine ; performance deterioration展开更多
In order to realize direct thrust control instead of conventional sensors-based control for aero-engine, a thrust estimator with high accuracy is designed by using the boosting technique to improve the performance of ...In order to realize direct thrust control instead of conventional sensors-based control for aero-engine, a thrust estimator with high accuracy is designed by using the boosting technique to improve the performance of least squares support vector regression (LSSVR). There exist two distinct features compared with the conven- tional boosting technique: (1) Sampling without replacement is used to avoid numerical instability for modeling LSSVR. (2) To realize the sparseness of LSSVR and reduce the computational complexity, only a subset of the training samples is used to construct LSSVR. Thus, this boosting method for LSSVR is called the boosting sparse LSSVR (BSLSSVR). Finally, simulation results show that BSLSSVR-based thrust estimator can satisfy the requirement of direct thrust control, i.e. , maximum absolute value of relative error of thrust estimation is not more than 5‰.展开更多
At the early stages of deep-water oil exploration and development, fewer and further apart wells are drilled than in onshore oilfields. Supervised least squares support vector machine algorithms are used to predict th...At the early stages of deep-water oil exploration and development, fewer and further apart wells are drilled than in onshore oilfields. Supervised least squares support vector machine algorithms are used to predict the reservoir parameters but the prediction accuracy is low. We combined the least squares support vector machine (LSSVM) algorithm with semi-supervised learning and established a semi-supervised regression model, which we call the semi-supervised least squares support vector machine (SLSSVM) model. The iterative matrix inversion is also introduced to improve the training ability and training time of the model. We use the UCI data to test the generalization of a semi-supervised and a supervised LSSVM models. The test results suggest that the generalization performance of the LSSVM model greatly improves and with decreasing training samples the generalization performance is better. Moreover, for small-sample models, the SLSSVM method has higher precision than the semi-supervised K-nearest neighbor (SKNN) method. The new semi- supervised LSSVM algorithm was used to predict the distribution of porosity and sandstone in the Jingzhou study area.展开更多
A single freedom degree model of drilling bit-rock was established according to the vibration mechanism and its dynamic characteristics. Moreover, a novel identification method of rock and soil parameters for vibratio...A single freedom degree model of drilling bit-rock was established according to the vibration mechanism and its dynamic characteristics. Moreover, a novel identification method of rock and soil parameters for vibration drilling based on the fuzzy least squares(FLS)-support vector machine(SVM) was developed, in which the fuzzy membership function was set by using linear distance, and its parameters, such as penalty factor and kernel parameter, were optimized by using adaptive genetic algorithm. And FLS-SVM identification on rock and soil parameters for vibration drilling was made by changing the input/output data from single freedom degree model of drilling bit-rock. The results of identification simulation and resonance column experiment show that relative error of natural frequency for some hard sand from identification simulation and resonance column experiment is 1.1% and the identification precision based on the fuzzy least squares-support vector machine is high.展开更多
Traditional coal mine safety prediction methods are off-line and do not have dynamic prediction functions.The Support Vector Machine(SVM) is a new machine learning algorithm that has excellent properties.The least squ...Traditional coal mine safety prediction methods are off-line and do not have dynamic prediction functions.The Support Vector Machine(SVM) is a new machine learning algorithm that has excellent properties.The least squares support vector machine(LS-SVM) algorithm is an improved algorithm of SVM.But the common LS-SVM algorithm,used directly in safety predictions,has some problems.We have first studied gas prediction problems and the basic theory of LS-SVM.Given these problems,we have investigated the affect of the time factor about safety prediction and present an on-line prediction algorithm,based on LS-SVM.Finally,given our observed data,we used the on-line algorithm to predict gas emissions and used other related algorithm to compare its performance.The simulation results have verified the validity of the new algorithm.展开更多
This paper presents an effective and efficient combination of feature extraction and multi-class classifier for motion classification by analyzing the surface electromyografic(sEMG) signals. In contrast to the existin...This paper presents an effective and efficient combination of feature extraction and multi-class classifier for motion classification by analyzing the surface electromyografic(sEMG) signals. In contrast to the existing methods,considering the non-stationary and nonlinear characteristics of EMG signals,to get the more separable feature set,we introduce the empirical mode decomposition(EMD) to decompose the original EMG signals into several intrinsic mode functions(IMFs) and then compute the coefficients of autoregressive models of each IMF to form the feature set. Based on the least squares support vector machines(LS-SVMs) ,the multi-class classifier is designed and constructed to classify various motions. The results of contrastive experiments showed that the accuracy of motion recognition is improved with the described classification scheme. Furthermore,compared with other classifiers using different features,the excellent performance indicated the potential of the SVM techniques embedding the EMD-AR kernel in motion classification.展开更多
The least squares support vector regression (LS-SVR) is usually used for the modeling of single output system, but it is not well suitable for the actual multi-input-multi-output system. The paper aims at the modeling...The least squares support vector regression (LS-SVR) is usually used for the modeling of single output system, but it is not well suitable for the actual multi-input-multi-output system. The paper aims at the modeling of multi-output systems by LS-SVR. The multi-output LS-SVR is derived in detail. To avoid the inversion of large matrix, the recursive algorithm of the parameters is given, which makes the online algorithm of LS-SVR practical. Since the computing time increases with the number of training samples, the sparseness is studied based on the pro-jection of online LS-SVR. The residual of projection less than a threshold is omitted, so that a lot of samples are kept out of the training set and the sparseness is obtained. The standard LS-SVR, nonsparse online LS-SVR and sparse online LS-SVR with different threshold are used for modeling the isomerization of C8 aromatics. The root-mean-square-error (RMSE), number of support vectors and running time of three algorithms are compared and the result indicates that the performance of sparse online LS-SVR is more favorable.展开更多
In order to enhance measuring precision of the real complex electromechanical system,complex industrial system and complex ecological & management system with characteristics of multi-variable,non-liner,strong cou...In order to enhance measuring precision of the real complex electromechanical system,complex industrial system and complex ecological & management system with characteristics of multi-variable,non-liner,strong coupling and large time-delay,in terms of the fuzzy character of this real complex system,a fuzzy least squares support vector machine(FLS-SVM) soft measurement model was established and its parameters were optimized by using adaptive mutative scale chaos immune algorithm.The simulation results reveal that fuzzy least squares support vector machines soft measurement model is of better approximation accuracy and robustness.And application results show that the relative errors of the soft measurement model are less than 3.34%.展开更多
Firstly,general regression neural network(GRNN) was used for variable selection of key influencing factors of residential load(RL) forecasting.Secondly,the key influencing factors chosen by GRNN were used as the input...Firstly,general regression neural network(GRNN) was used for variable selection of key influencing factors of residential load(RL) forecasting.Secondly,the key influencing factors chosen by GRNN were used as the input and output terminals of urban and rural RL for simulating and learning.In addition,the suitable parameters of final model were obtained through applying the evidence theory to combine the optimization results which were calculated with the PSO method and the Bayes theory.Then,the model of PSO-Bayes least squares support vector machine(PSO-Bayes-LS-SVM) was established.A case study was then provided for the learning and testing.The empirical analysis results show that the mean square errors of urban and rural RL forecast are 0.02% and 0.04%,respectively.At last,taking a specific province RL in China as an example,the forecast results of RL from 2011 to 2015 were obtained.展开更多
A new mathematical model to estimate the parameters of the probability-integral method for mining subsidence prediction is proposed.Based on least squares support vector machine(LS-SVM) theory, it is capable of improv...A new mathematical model to estimate the parameters of the probability-integral method for mining subsidence prediction is proposed.Based on least squares support vector machine(LS-SVM) theory, it is capable of improving the precision and reliability of mining subsidence prediction.Many of the geological and mining factors involved are related in a nonlinear way.The new model is based on statistical theory(SLT) and empirical risk minimization(ERM) principles.Typical data collected from observation stations were used for the learning and training samples.The calculated results from the LS-SVM model were compared with the prediction results of a back propagation neural network(BPNN) model.The results show that the parameters were more precisely predicted by the LS-SVM model than by the BPNN model.The LS-SVM model was faster in computation and had better generalized performance.It provides a highly effective method for calculating the predicting parameters of the probability-integral method.展开更多
In the current study, the efficiency of Wavelet-based Least Square Support Vector Machine (WLSSVM) model was examined for prediction of daily and monthly Suspended Sediment Load (SSL) of the Mississippi River. For...In the current study, the efficiency of Wavelet-based Least Square Support Vector Machine (WLSSVM) model was examined for prediction of daily and monthly Suspended Sediment Load (SSL) of the Mississippi River. For this purpose, in the first step, SSL was predicted via ad hoc LSSVM and Artificial Neural Network (ANN) models; then, streamflow and SSL data were decomposed into sub- signals via wavelet, and these decomposed sub-time series were imposed to LSSVM and ANN to simulate discharge-SSL relationship. Finally, the ability of WLSSVM was compared with other models in multi- step-ahead SSL predictions. The results showed that in daily SSL prediction, LSSVM has better outcomes with Determination Coefficient (DC)=o.92 than ad hoc ANN with DC=o.88. However unlike daily SSL, in monthly modeling, ANN has a bit accurate upshot. WLSSVM and wavelet-based ANN (WANN) models showed same consequences in daily and different in monthly SSL predictions, and adding wavelet led to more accuracy of LSSVM and ANN. Furthermore, conjunction of wavelet to LSSVM and ANN evaluated via multi-step-ahead SSL predictions and, e.g., DCLssVM=0.4 was increased to the DCwLsSVM=0.71 in 7- day ahead SSL prediction. In addition, WLSSVM outperformed WANN by increment of time horizon prediction.展开更多
The pre-warning of abnormal energy consumption is important for energy conservation of industrial engineering. However, related studies on the lead smelting industries which usually have a huge energy consumption are ...The pre-warning of abnormal energy consumption is important for energy conservation of industrial engineering. However, related studies on the lead smelting industries which usually have a huge energy consumption are rarely reported. Therefore, a pre-warning system was established in this study based on the intelligent prediction of energy consumption and the identification of abnormal energy consumption. A least square support vector regression (LSSVR) model optimized by the adaptive genetic algorithm was developed to predict the energy consumption in the process of lead smelting. A recurrence plots (RP) analysis and a confidence intervals (CI) analysis were conducted to quantitatively confirm the stationary degree of energy consumption and the normal range of energy consumption, respectively, to realize the identification of abnormal energy consumption. It is found the prediction accuracy of LSSVR model can exceed 90% based on the comparison between the actual and predicted data. The energy consumption is considered to be non-stationary if the correlation coefficient between the time series of periodicity and energy consumption is larger than that between the time series of periodicity and Lorenz. Additionally, the lower limit and upper limit of normal energy consumption are obtained.展开更多
Combining mathematical morphology (MM),nonparametric and nonlinear model,a novel approach for predicting slope displacement was developed to improve the prediction accuracy.A parallel-composed morphological filter wit...Combining mathematical morphology (MM),nonparametric and nonlinear model,a novel approach for predicting slope displacement was developed to improve the prediction accuracy.A parallel-composed morphological filter with multiple structure elements was designed to process measured displacement time series with adaptive multi-scale decoupling.Whereafter,functional-coefficient auto regressive (FAR) models were established for the random subsequences.Meanwhile,the trend subsequence was processed by least squares support vector machine (LSSVM) algorithm.Finally,extrapolation results obtained were superposed to get the ultimate prediction result.Case study and comparative analysis demonstrate that the presented method can optimize training samples and show a good nonlinear predicting performance with low risk of choosing wrong algorithms.Mean absolute percentage error (MAPE) and root mean square error (RMSE) of the MM-FAR&LSSVM predicting results are as low as 1.670% and 0.172 mm,respectively,which means that the prediction accuracy are improved significantly.展开更多
According to the characteristics of large underground caverns, by using the safety factor of surrounding rock mass point as the control standard of cavern stability, RandWPSO-LSSVM optimization feedback method and flo...According to the characteristics of large underground caverns, by using the safety factor of surrounding rock mass point as the control standard of cavern stability, RandWPSO-LSSVM optimization feedback method and flow process of large underground cavern anchor parameters were established. By applying the optimization feedback method to actual project, the best anchor parameters of large surge shaft five-tunnel area underground cavern of the Nuozhadu hydropower station were obtained through optimization. The results show that the predicted effect of LSSVM prediction model obtained through RandWPSO optimization is good, reasonable and reliable. Combination of the best anchor parameters obtained is 114131312, that is, the locked anchor bar spacing is 1 m x 1 m, pre-stress is 100 kN, elevation 580.45-586.50 m section anchor bar diameter is 36.00 mm, length is 4.50 m, spacing is 1.5 m × 2.5 m; anchor bar diameter at the five-tunnel area side wall is 25.00 mm, length is 7.50 m, spacing is 1 m× 1.5 m, and the shotcrete thickness is 0.15 m. The feedback analyses show that the optimization feedback method of large underground cavern anchor parameters is reasonable and reliable, which has important guiding significance for ensuring the stability of large underground caverns and for saving project investment.展开更多
In order to obtain the trend of urban rail transit traffic flow and grasp the fluctuation range of passenger flow better,this paper proposes a combined forecasting model of passenger flow fluctuation range based on fu...In order to obtain the trend of urban rail transit traffic flow and grasp the fluctuation range of passenger flow better,this paper proposes a combined forecasting model of passenger flow fluctuation range based on fuzzy information granulation and least squares support vector machine(LS-SVM)optimized by chaos particle swarm optimization(CPSO).Due to the nonlinearity and fluctuation of the passenger flow,firstly,fuzzy information granulation is used to extract the valid data from the window according to the requirement.Secondly,CPSO that has strong global search ability is applied to optimize the parameters of the LS-SVM forecasting model.Finally,the combined model is used to forecast the fluctuation range of early peak passenger flow at Tiyu Xilu Station of Guangzhou Metro Line 3 in 2014,and the results are compared and analyzed with other models.Simulation results demonstrate that the combined forecasting model can effectively track the fluctuation of passenger flow,which provides an effective method for predicting the fluctuation range of short-term passenger flow in the future.展开更多
基金supported by National Natural Science Foundation of China(Nos.61662042,62062049)Science and Technology Plan of Gansu Province(Nos.21JR7RA288,21JR7RE174).
文摘Improving the prediction accuracy of wind power is an effective means to reduce the impact of wind power on power grid.Therefore,we proposed an improved African vulture optimization algorithm(AVOA)to realize the prediction model of multi-objective optimization least squares support vector machine(LSSVM).Firstly,the original wind power time series was decomposed into a certain number of intrinsic modal components(IMFs)using variational modal decomposition(VMD).Secondly,random numbers in population initialization were replaced by Tent chaotic mapping,multi-objective LSSVM optimization was introduced by AVOA improved by elitist non-dominated sorting and crowding operator,and then each component was predicted.Finally,Tent multi-objective AVOA-LSSVM(TMOALSSVM)method was used to sum each component to obtain the final prediction result.The simulation results show that the improved AVOA based on Tent chaotic mapping,the improved non-dominated sorting algorithm with elite strategy,and the improved crowding operator are the optimal models for single-objective and multi-objective prediction.Among them,TMOALSSVM model has the smallest average error of stroke power values in four seasons,which are 0.0694,0.0545 and 0.0211,respectively.The average value of DS statistics in the four seasons is 0.9902,and the statistical value is the largest.The proposed model effectively predicts four seasons of wind power values on lateral and longitudinal precision,and faster and more accurately finds the optimal solution on the current solution space sets,which proves that the method has a certain scientific significance in the development of wind power prediction technology.
文摘TiC particles reinforced Ni-based alloy composite coatings were prepared on 7005 aluminum alloy by plasma spray. The effects of load, speed and temperature on the tribological behavior and mechanisms of the composite coatings under dry friction were researched. The wear prediction model of the composite coatings was established based on the least square support vector machine (LS-SVM). The results show that the composite coatings exhibit smaller friction coefficients and wear losses than the Ni-based alloy coatings under different friction conditions. The predicting time of the LS-SVM model is only 12.93%of that of the BP-ANN model, and the predicting accuracies on friction coefficients and wear losses of the former are increased by 58.74%and 41.87%compared with the latter. The LS-SVM model can effectively predict the tribological behavior of the TiCP/Ni-base alloy composite coatings under dry friction.
基金Supported by 863 Plan Project of China(2006AA100213)And theSupport Plan Project of National Science and Technology(2007BAD38B04)~~
文摘Commonly used grain yield forecasting models were briefly reviewed, and a yield prediction model of irrigation district was established based on least squares support vector machines (LS-SVM). The grain yield in irrigation district was analog calculated. And the test samples were used to compare with gray prediction, and neural network model. The maximum predicted error of least squares SVM was 7.12%, with an average error of 4.81%. The results showed that LS-SVM model has high prediction accuracy and strong generalization ability. So it could be used as a new method for irrigation district yield prediction
基金Project(2011BAE23B05)supported by National Key Technology R&D Program of ChinaProject(61004134)supported by the National Natural Science Foundation of ChinaProject(LQ13F030007)supported by Zhejiang Provincial Natural Science Foundation of China
文摘A vision-based color analysis system was developed for rapid estimation of copper content in the secondary copper smelting process. Firstly, cross section images of secondary copper samples were captured by the designed vision system. After the preprocessing and segmenting procedures, the images were selected according to their grayscale standard deviations of pixels and percentages of edge pixels in the luminance component. The selected images were then used to extract the information of the improved color vector angles, from which the copper content estimation model was developed based on the least squares support vector regression (LSSVR) method. For comparison, three additional LSSVR models, namely, only with sample selection, only with improved color vector angle, without sample selection or improved color vector angle, were developed. In addition, two exponential models, namely, with sample selection, without sample selection, were developed. Experimental results indicate that the proposed method is more effective for improving the copper content estimation accuracy, particularly when the sample size is small.
基金Supported by the National Natural Science Foundation of China(51006052)the Nanjing University of Science and Technology Outstanding Scholar Supporting Program~~
文摘A thrust estimator with high precision and excellent real-time performance is needed to mitigate perfor- mance deterioration for future aero-engines. A weight least squares support vector regression is proposed using a novel weighting strategy. Then a thrust estimator based on the proposed regression is designed for the perfor- mance deterioration. Compared with the existing weighting strategy, the novel one not only satisfies the require- ment of precision but also enhances the real-time performance. Finally, numerical experiments demonstrate the effectiveness and feasibility of the proposed weighted least squares support vector regression for thrust estimator. Key words : intelligent engine control; least squares ; support vector machine ; performance deterioration
基金Supported by the National Natural Science Foundation of China(50576033)the Aeronautical Science Foundation of China(04C52019)~~
文摘In order to realize direct thrust control instead of conventional sensors-based control for aero-engine, a thrust estimator with high accuracy is designed by using the boosting technique to improve the performance of least squares support vector regression (LSSVR). There exist two distinct features compared with the conven- tional boosting technique: (1) Sampling without replacement is used to avoid numerical instability for modeling LSSVR. (2) To realize the sparseness of LSSVR and reduce the computational complexity, only a subset of the training samples is used to construct LSSVR. Thus, this boosting method for LSSVR is called the boosting sparse LSSVR (BSLSSVR). Finally, simulation results show that BSLSSVR-based thrust estimator can satisfy the requirement of direct thrust control, i.e. , maximum absolute value of relative error of thrust estimation is not more than 5‰.
基金supported by the "12th Five Year Plan" National Science and Technology Major Special Subject:Well Logging Data and Seismic Data Fusion Technology Research(No.2011ZX05023-005-006)
文摘At the early stages of deep-water oil exploration and development, fewer and further apart wells are drilled than in onshore oilfields. Supervised least squares support vector machine algorithms are used to predict the reservoir parameters but the prediction accuracy is low. We combined the least squares support vector machine (LSSVM) algorithm with semi-supervised learning and established a semi-supervised regression model, which we call the semi-supervised least squares support vector machine (SLSSVM) model. The iterative matrix inversion is also introduced to improve the training ability and training time of the model. We use the UCI data to test the generalization of a semi-supervised and a supervised LSSVM models. The test results suggest that the generalization performance of the LSSVM model greatly improves and with decreasing training samples the generalization performance is better. Moreover, for small-sample models, the SLSSVM method has higher precision than the semi-supervised K-nearest neighbor (SKNN) method. The new semi- supervised LSSVM algorithm was used to predict the distribution of porosity and sandstone in the Jingzhou study area.
基金Project(2012BAK09B02-05) supported by the National Key Technology R&D Program of China during the Twelfth Five-year PeriodProject(51274250) supported by the National Natural Science Foundation of China
文摘A single freedom degree model of drilling bit-rock was established according to the vibration mechanism and its dynamic characteristics. Moreover, a novel identification method of rock and soil parameters for vibration drilling based on the fuzzy least squares(FLS)-support vector machine(SVM) was developed, in which the fuzzy membership function was set by using linear distance, and its parameters, such as penalty factor and kernel parameter, were optimized by using adaptive genetic algorithm. And FLS-SVM identification on rock and soil parameters for vibration drilling was made by changing the input/output data from single freedom degree model of drilling bit-rock. The results of identification simulation and resonance column experiment show that relative error of natural frequency for some hard sand from identification simulation and resonance column experiment is 1.1% and the identification precision based on the fuzzy least squares-support vector machine is high.
文摘Traditional coal mine safety prediction methods are off-line and do not have dynamic prediction functions.The Support Vector Machine(SVM) is a new machine learning algorithm that has excellent properties.The least squares support vector machine(LS-SVM) algorithm is an improved algorithm of SVM.But the common LS-SVM algorithm,used directly in safety predictions,has some problems.We have first studied gas prediction problems and the basic theory of LS-SVM.Given these problems,we have investigated the affect of the time factor about safety prediction and present an on-line prediction algorithm,based on LS-SVM.Finally,given our observed data,we used the on-line algorithm to predict gas emissions and used other related algorithm to compare its performance.The simulation results have verified the validity of the new algorithm.
基金Project (No. 2005CB724303) supported by the National Basic Re-search Program (973) of China
文摘This paper presents an effective and efficient combination of feature extraction and multi-class classifier for motion classification by analyzing the surface electromyografic(sEMG) signals. In contrast to the existing methods,considering the non-stationary and nonlinear characteristics of EMG signals,to get the more separable feature set,we introduce the empirical mode decomposition(EMD) to decompose the original EMG signals into several intrinsic mode functions(IMFs) and then compute the coefficients of autoregressive models of each IMF to form the feature set. Based on the least squares support vector machines(LS-SVMs) ,the multi-class classifier is designed and constructed to classify various motions. The results of contrastive experiments showed that the accuracy of motion recognition is improved with the described classification scheme. Furthermore,compared with other classifiers using different features,the excellent performance indicated the potential of the SVM techniques embedding the EMD-AR kernel in motion classification.
基金Supported by the National Creative Research Groups Science Foundation of China (60721062)the National Basic Research Program of China (2007CB714000)
文摘The least squares support vector regression (LS-SVR) is usually used for the modeling of single output system, but it is not well suitable for the actual multi-input-multi-output system. The paper aims at the modeling of multi-output systems by LS-SVR. The multi-output LS-SVR is derived in detail. To avoid the inversion of large matrix, the recursive algorithm of the parameters is given, which makes the online algorithm of LS-SVR practical. Since the computing time increases with the number of training samples, the sparseness is studied based on the pro-jection of online LS-SVR. The residual of projection less than a threshold is omitted, so that a lot of samples are kept out of the training set and the sparseness is obtained. The standard LS-SVR, nonsparse online LS-SVR and sparse online LS-SVR with different threshold are used for modeling the isomerization of C8 aromatics. The root-mean-square-error (RMSE), number of support vectors and running time of three algorithms are compared and the result indicates that the performance of sparse online LS-SVR is more favorable.
基金Project(51176045)supported by the National Natural Science Foundation of ChinaProject(2011ZK2032)supported by the Major Soft Science Program of Science and Technology Ministry of Hunan Province,China
文摘In order to enhance measuring precision of the real complex electromechanical system,complex industrial system and complex ecological & management system with characteristics of multi-variable,non-liner,strong coupling and large time-delay,in terms of the fuzzy character of this real complex system,a fuzzy least squares support vector machine(FLS-SVM) soft measurement model was established and its parameters were optimized by using adaptive mutative scale chaos immune algorithm.The simulation results reveal that fuzzy least squares support vector machines soft measurement model is of better approximation accuracy and robustness.And application results show that the relative errors of the soft measurement model are less than 3.34%.
基金Project(07JA790092) supported by the Research Grants from Humanities and Social Science Program of Ministry of Education of ChinaProject(10MR44) supported by the Fundamental Research Funds for the Central Universities in China
文摘Firstly,general regression neural network(GRNN) was used for variable selection of key influencing factors of residential load(RL) forecasting.Secondly,the key influencing factors chosen by GRNN were used as the input and output terminals of urban and rural RL for simulating and learning.In addition,the suitable parameters of final model were obtained through applying the evidence theory to combine the optimization results which were calculated with the PSO method and the Bayes theory.Then,the model of PSO-Bayes least squares support vector machine(PSO-Bayes-LS-SVM) was established.A case study was then provided for the learning and testing.The empirical analysis results show that the mean square errors of urban and rural RL forecast are 0.02% and 0.04%,respectively.At last,taking a specific province RL in China as an example,the forecast results of RL from 2011 to 2015 were obtained.
基金Projects 50774080 supported by the National Natural Science Foundation of China200348 by the Foundation for the National Excellent Doctoral Dis-sertation of China
文摘A new mathematical model to estimate the parameters of the probability-integral method for mining subsidence prediction is proposed.Based on least squares support vector machine(LS-SVM) theory, it is capable of improving the precision and reliability of mining subsidence prediction.Many of the geological and mining factors involved are related in a nonlinear way.The new model is based on statistical theory(SLT) and empirical risk minimization(ERM) principles.Typical data collected from observation stations were used for the learning and training samples.The calculated results from the LS-SVM model were compared with the prediction results of a back propagation neural network(BPNN) model.The results show that the parameters were more precisely predicted by the LS-SVM model than by the BPNN model.The LS-SVM model was faster in computation and had better generalized performance.It provides a highly effective method for calculating the predicting parameters of the probability-integral method.
基金supported by the University of Tabriz under grant No. 1117394325
文摘In the current study, the efficiency of Wavelet-based Least Square Support Vector Machine (WLSSVM) model was examined for prediction of daily and monthly Suspended Sediment Load (SSL) of the Mississippi River. For this purpose, in the first step, SSL was predicted via ad hoc LSSVM and Artificial Neural Network (ANN) models; then, streamflow and SSL data were decomposed into sub- signals via wavelet, and these decomposed sub-time series were imposed to LSSVM and ANN to simulate discharge-SSL relationship. Finally, the ability of WLSSVM was compared with other models in multi- step-ahead SSL predictions. The results showed that in daily SSL prediction, LSSVM has better outcomes with Determination Coefficient (DC)=o.92 than ad hoc ANN with DC=o.88. However unlike daily SSL, in monthly modeling, ANN has a bit accurate upshot. WLSSVM and wavelet-based ANN (WANN) models showed same consequences in daily and different in monthly SSL predictions, and adding wavelet led to more accuracy of LSSVM and ANN. Furthermore, conjunction of wavelet to LSSVM and ANN evaluated via multi-step-ahead SSL predictions and, e.g., DCLssVM=0.4 was increased to the DCwLsSVM=0.71 in 7- day ahead SSL prediction. In addition, WLSSVM outperformed WANN by increment of time horizon prediction.
基金Project(2015SK1002) supported by Key Projects of Hunan Province Science and Technology Plan,China
文摘The pre-warning of abnormal energy consumption is important for energy conservation of industrial engineering. However, related studies on the lead smelting industries which usually have a huge energy consumption are rarely reported. Therefore, a pre-warning system was established in this study based on the intelligent prediction of energy consumption and the identification of abnormal energy consumption. A least square support vector regression (LSSVR) model optimized by the adaptive genetic algorithm was developed to predict the energy consumption in the process of lead smelting. A recurrence plots (RP) analysis and a confidence intervals (CI) analysis were conducted to quantitatively confirm the stationary degree of energy consumption and the normal range of energy consumption, respectively, to realize the identification of abnormal energy consumption. It is found the prediction accuracy of LSSVR model can exceed 90% based on the comparison between the actual and predicted data. The energy consumption is considered to be non-stationary if the correlation coefficient between the time series of periodicity and energy consumption is larger than that between the time series of periodicity and Lorenz. Additionally, the lower limit and upper limit of normal energy consumption are obtained.
基金Project(20090162120084)supported by Research Fund for the Doctoral Program of Higher Education of ChinaProject(08JJ4014)supported by the Natural Science Foundation of Hunan Province,China
文摘Combining mathematical morphology (MM),nonparametric and nonlinear model,a novel approach for predicting slope displacement was developed to improve the prediction accuracy.A parallel-composed morphological filter with multiple structure elements was designed to process measured displacement time series with adaptive multi-scale decoupling.Whereafter,functional-coefficient auto regressive (FAR) models were established for the random subsequences.Meanwhile,the trend subsequence was processed by least squares support vector machine (LSSVM) algorithm.Finally,extrapolation results obtained were superposed to get the ultimate prediction result.Case study and comparative analysis demonstrate that the presented method can optimize training samples and show a good nonlinear predicting performance with low risk of choosing wrong algorithms.Mean absolute percentage error (MAPE) and root mean square error (RMSE) of the MM-FAR&LSSVM predicting results are as low as 1.670% and 0.172 mm,respectively,which means that the prediction accuracy are improved significantly.
基金Project(50911130366) supported by the National Natural Science Foundation of China
文摘According to the characteristics of large underground caverns, by using the safety factor of surrounding rock mass point as the control standard of cavern stability, RandWPSO-LSSVM optimization feedback method and flow process of large underground cavern anchor parameters were established. By applying the optimization feedback method to actual project, the best anchor parameters of large surge shaft five-tunnel area underground cavern of the Nuozhadu hydropower station were obtained through optimization. The results show that the predicted effect of LSSVM prediction model obtained through RandWPSO optimization is good, reasonable and reliable. Combination of the best anchor parameters obtained is 114131312, that is, the locked anchor bar spacing is 1 m x 1 m, pre-stress is 100 kN, elevation 580.45-586.50 m section anchor bar diameter is 36.00 mm, length is 4.50 m, spacing is 1.5 m × 2.5 m; anchor bar diameter at the five-tunnel area side wall is 25.00 mm, length is 7.50 m, spacing is 1 m× 1.5 m, and the shotcrete thickness is 0.15 m. The feedback analyses show that the optimization feedback method of large underground cavern anchor parameters is reasonable and reliable, which has important guiding significance for ensuring the stability of large underground caverns and for saving project investment.
基金National Natural Science Foundation of China(No.61663021)Science and Technology Support Project of Gansu Province(No.1304GKCA023)Scientific Research Project in University of Gansu Province(No.2017A-025)
文摘In order to obtain the trend of urban rail transit traffic flow and grasp the fluctuation range of passenger flow better,this paper proposes a combined forecasting model of passenger flow fluctuation range based on fuzzy information granulation and least squares support vector machine(LS-SVM)optimized by chaos particle swarm optimization(CPSO).Due to the nonlinearity and fluctuation of the passenger flow,firstly,fuzzy information granulation is used to extract the valid data from the window according to the requirement.Secondly,CPSO that has strong global search ability is applied to optimize the parameters of the LS-SVM forecasting model.Finally,the combined model is used to forecast the fluctuation range of early peak passenger flow at Tiyu Xilu Station of Guangzhou Metro Line 3 in 2014,and the results are compared and analyzed with other models.Simulation results demonstrate that the combined forecasting model can effectively track the fluctuation of passenger flow,which provides an effective method for predicting the fluctuation range of short-term passenger flow in the future.