以具有精英保留的免疫遗传算法(Immune genetic algorithm with elitism,IGAE)和栅格法为基础,提出一种新的移动机器人最优路径规划方法。其步骤为:首先采用栅格法对机器人工作空间进行划分,建立给定环境中移动机器人的自由空间模型;每...以具有精英保留的免疫遗传算法(Immune genetic algorithm with elitism,IGAE)和栅格法为基础,提出一种新的移动机器人最优路径规划方法。其步骤为:首先采用栅格法对机器人工作空间进行划分,建立给定环境中移动机器人的自由空间模型;每个栅格用1个序号标识,并以路径上各栅格序号作为机器人路径的编码参数。然后,采用直角坐标和序号混合应用的方法产生初始种群,群体中每1个个体表示1条机器人路径,采用IGAE算法对种群进行优化,最终找出最优路径。为了保持种群初始化和遗传操作过程中个体所对应的路径的连续性和避障要求,在IGAE算法中引入删除、插入算子。计算机仿真实验结果表明,所提出的方法比基于全局收敛型遗传算法的路径规划方法更加快速和有效。展开更多
文摘以具有精英保留的免疫遗传算法(Immune genetic algorithm with elitism,IGAE)和栅格法为基础,提出一种新的移动机器人最优路径规划方法。其步骤为:首先采用栅格法对机器人工作空间进行划分,建立给定环境中移动机器人的自由空间模型;每个栅格用1个序号标识,并以路径上各栅格序号作为机器人路径的编码参数。然后,采用直角坐标和序号混合应用的方法产生初始种群,群体中每1个个体表示1条机器人路径,采用IGAE算法对种群进行优化,最终找出最优路径。为了保持种群初始化和遗传操作过程中个体所对应的路径的连续性和避障要求,在IGAE算法中引入删除、插入算子。计算机仿真实验结果表明,所提出的方法比基于全局收敛型遗传算法的路径规划方法更加快速和有效。