The addressing and routing algorithm on hexagonal networks is still an open problem so far.Although many related works have been done to resolve this problem to some extent,the properties of hexagonal networks are sti...The addressing and routing algorithm on hexagonal networks is still an open problem so far.Although many related works have been done to resolve this problem to some extent,the properties of hexagonal networks are still not explored adequately.In this paper,we first create an oblique coordinate system and redefine the Euclidean space to address the hexagonal nodes.Then an optimal routing algorithm using vectors and angles of the redefined Euclidean space is developed.Compared with the traditional 3-directions scheme and the Cayley graph method,the proposed routing algorithm is more efficient and totally independent of the scale of networks with two-tuples addresses.We also prove that the path(s) obtained by this algorithm is always the shortest one(s).展开更多
In order to form an algorithm for distribution network routing,an automatic routing method of distribution network planning was proposed based on the shortest path.The problem of automatic routing was divided into two...In order to form an algorithm for distribution network routing,an automatic routing method of distribution network planning was proposed based on the shortest path.The problem of automatic routing was divided into two steps in the method:the first step was that the shortest paths along streets between substation and load points were found by the basic ant colony algorithm to form a preliminary radial distribution network,and the second step was that the result of the shortest path was used to initialize pheromone concentration and pheromone updating rules to generate globally optimal distribution network.Cases studies show that the proposed method is effective and can meet the planning requirements.It is verified that the proposed method has better solution and utility than planning method based on the ant colony algorithm.展开更多
Opportunistic networks are random networks and do not communicate with each other among respective communication areas.This situation leads to great difficulty in message transfer.This paper proposes a reducing energy...Opportunistic networks are random networks and do not communicate with each other among respective communication areas.This situation leads to great difficulty in message transfer.This paper proposes a reducing energy consumption optimal selection of path transmission(OSPT) routing algorithm in opportunistic networks.This algorithm designs a dynamic random network topology,creates a dynamic link,and realizes an optimized selected path.This algorithm solves a problem that nodes are unable to deliver messages for a long time in opportunistic networks.According to the simulation experiment,OSPT improves deliver ratio,and reduces energy consumption,cache time and transmission delay compared with the Epidemic Algorithm and Spray and Wait Algorithm in opportunistic networks.展开更多
The transfer system,an important subsystem in urban citizen passenger transport system,is a guarantee of public transport priority and is crucial in the whole urban passenger transport traffic.What the majority of bus...The transfer system,an important subsystem in urban citizen passenger transport system,is a guarantee of public transport priority and is crucial in the whole urban passenger transport traffic.What the majority of bus passengers consider is the convenience and comfort of the bus ride,which reduces the transfer time of bus passengers."Transfer time" is considered to be the first factor by the majority of bus passengers who select the routes.In this paper,according to the needs of passengers,optimization algorithm,with the minimal distance being the first goal,namely,the improved Dijkstra algorithm based on the minimal distance,is put forward on the basis of the optimization algorithm with the minimal transfer time being the first goal.展开更多
A layered algorithm by bidirectional searching is proposed in this paper to solve the problem that it is difficult and time consuming to reach an optimal solution of the route search with multiple parameter restrictio...A layered algorithm by bidirectional searching is proposed in this paper to solve the problem that it is difficult and time consuming to reach an optimal solution of the route search with multiple parameter restrictions for good quality of service. Firstly, a set of reachable paths to each intermediate node from the source node and the sink node based on adjacent matrix transformation are calculated respectively. Then a temporal optimal path is selected by adopting the proposed heuristic method according to a non-linear cost function. When the total number of the accumulated nodes by bidirectional searching reaches n-2, the paths from two directions to an intermediate node should be combined and several paths via different nodes from the source node to the sink node can be obtained, then an optimal path in the whole set of paths can be taken as the output route. Some simulation examples are included to show the effectiveness and efficiency of the proposed method. In addition, the proposed algorithm can be implemented with parallel computation and thus, the new algorithm has better performance in time complexity than other algorithms. Mathematical analysis indicates that the maximum complexity in time, based on parallel computation, is the same as the polynomial complexity of O(kn2-3kn+k), and some simulation results are shown to support this analysis.展开更多
基金supported in part by International Researcher Exchange Project of National Science Foundation of China and Centre national de la recherche scientifique de France(NSFC-CNRS)under Grant No.61211130104national information security project 242 under Grant No.2014A104National Science Foundation of China under Grants No.60932003,61271220,61202266,61172053
文摘The addressing and routing algorithm on hexagonal networks is still an open problem so far.Although many related works have been done to resolve this problem to some extent,the properties of hexagonal networks are still not explored adequately.In this paper,we first create an oblique coordinate system and redefine the Euclidean space to address the hexagonal nodes.Then an optimal routing algorithm using vectors and angles of the redefined Euclidean space is developed.Compared with the traditional 3-directions scheme and the Cayley graph method,the proposed routing algorithm is more efficient and totally independent of the scale of networks with two-tuples addresses.We also prove that the path(s) obtained by this algorithm is always the shortest one(s).
基金Project(2009CB219703) supported by the National Basic Research Program of ChinaProject(2011AA05A117) supported by the National High Technology Research and Development Program of China
文摘In order to form an algorithm for distribution network routing,an automatic routing method of distribution network planning was proposed based on the shortest path.The problem of automatic routing was divided into two steps in the method:the first step was that the shortest paths along streets between substation and load points were found by the basic ant colony algorithm to form a preliminary radial distribution network,and the second step was that the result of the shortest path was used to initialize pheromone concentration and pheromone updating rules to generate globally optimal distribution network.Cases studies show that the proposed method is effective and can meet the planning requirements.It is verified that the proposed method has better solution and utility than planning method based on the ant colony algorithm.
基金Supported by the National Natural Science Foundation of China(No.61379057,61073186,61309001,61379110,61103202)Doctoral Fund of Ministry of Education of China(No.20120162130008)the National Basic Research Program of China(973 Program)(No.2014CB046305)
文摘Opportunistic networks are random networks and do not communicate with each other among respective communication areas.This situation leads to great difficulty in message transfer.This paper proposes a reducing energy consumption optimal selection of path transmission(OSPT) routing algorithm in opportunistic networks.This algorithm designs a dynamic random network topology,creates a dynamic link,and realizes an optimized selected path.This algorithm solves a problem that nodes are unable to deliver messages for a long time in opportunistic networks.According to the simulation experiment,OSPT improves deliver ratio,and reduces energy consumption,cache time and transmission delay compared with the Epidemic Algorithm and Spray and Wait Algorithm in opportunistic networks.
基金supported by School Foundation of North University of ChinaPostdoctoral granted financial support from China Postdoctoral Science Foundation(20100481307)+1 种基金Natural Science Foundation of Shanxi(2009011018-3)National Natural Science Foundation of China(60876077)
文摘The transfer system,an important subsystem in urban citizen passenger transport system,is a guarantee of public transport priority and is crucial in the whole urban passenger transport traffic.What the majority of bus passengers consider is the convenience and comfort of the bus ride,which reduces the transfer time of bus passengers."Transfer time" is considered to be the first factor by the majority of bus passengers who select the routes.In this paper,according to the needs of passengers,optimization algorithm,with the minimal distance being the first goal,namely,the improved Dijkstra algorithm based on the minimal distance,is put forward on the basis of the optimization algorithm with the minimal transfer time being the first goal.
文摘A layered algorithm by bidirectional searching is proposed in this paper to solve the problem that it is difficult and time consuming to reach an optimal solution of the route search with multiple parameter restrictions for good quality of service. Firstly, a set of reachable paths to each intermediate node from the source node and the sink node based on adjacent matrix transformation are calculated respectively. Then a temporal optimal path is selected by adopting the proposed heuristic method according to a non-linear cost function. When the total number of the accumulated nodes by bidirectional searching reaches n-2, the paths from two directions to an intermediate node should be combined and several paths via different nodes from the source node to the sink node can be obtained, then an optimal path in the whole set of paths can be taken as the output route. Some simulation examples are included to show the effectiveness and efficiency of the proposed method. In addition, the proposed algorithm can be implemented with parallel computation and thus, the new algorithm has better performance in time complexity than other algorithms. Mathematical analysis indicates that the maximum complexity in time, based on parallel computation, is the same as the polynomial complexity of O(kn2-3kn+k), and some simulation results are shown to support this analysis.