期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
参数优化最大二阶循环平稳盲解卷积行星轮轴承故障提取 被引量:6
1
作者 林云 郭瑜 陈鑫 《振动与冲击》 EI CSCD 北大核心 2023年第2期321-328,共8页
在行星齿轮箱振动中,齿轮相关振动分量通常具有较大的能量,同时轴承滑移会造成行星轮轴承故障对应振动分量的特征频率获取困难。为此,提出一种基于参数优化最大二阶循环平稳盲解卷积(cyclostationary blind deconvolution, CYCBD)的行... 在行星齿轮箱振动中,齿轮相关振动分量通常具有较大的能量,同时轴承滑移会造成行星轮轴承故障对应振动分量的特征频率获取困难。为此,提出一种基于参数优化最大二阶循环平稳盲解卷积(cyclostationary blind deconvolution, CYCBD)的行星轮轴承故障提取方法。该方法针对CYCBD技术在轴承滑移条件下难以获取循环频率和滤波器长度的问题,以改进的包络谱故障特征比(improved envelope spectrum fault feature ratio, IFFR)指标作为粒子群算法的适应度函数,自动获取CYCBD算法中实际的循环频率和优化滤波器长度,利用参数自适应的CYCBD算法增强了轴承故障冲击。通过解卷积结果的平方包络谱反映轴承故障特征,达到准确提取故障特征的目的。故障仿真和试验研究结果表明,该方法可以有效提取行星轮轴承故障特征。 展开更多
关键词 最大二阶循环平稳卷积(cycbd) 行星齿轮箱 轴承故障诊断 故障特征比
下载PDF
基于FIF-CYCBD的滚动轴承故障特征提取方法研究 被引量:1
2
作者 刘洋 李凌均 +2 位作者 王宇 王钧铄 曹亚磊 《郑州大学学报(工学版)》 CAS 北大核心 2022年第4期35-40,共6页
针对滚动轴承所处工况复杂、提取故障特征困难的问题,提出了一种基于快速迭代滤波分解(FIF)和最大二阶循环平稳盲解卷积(CYCBD)的故障特征提取方法。首先,通过利用FIF方法对源信号进行自适应分解,得到一系列本征模态分量;其次,依据相关... 针对滚动轴承所处工况复杂、提取故障特征困难的问题,提出了一种基于快速迭代滤波分解(FIF)和最大二阶循环平稳盲解卷积(CYCBD)的故障特征提取方法。首先,通过利用FIF方法对源信号进行自适应分解,得到一系列本征模态分量;其次,依据相关系数准则对和源信号相关系数大于0.6的分量进行重构,并根据FIF得到的分解结果设置合适的循环频率采集器;最后,利用CYCBD方法对重构后的信号进行解混去噪,对处理后的信号进行包络解调分析。仿真实验以及相关实验数据表明,所提方法具有良好的信噪分离效果,相较于信号中突出的噪声分量,处理得到的故障特征频率幅值高于噪声幅值,可以有效实现轴承故障频率及其倍频特征的提取。 展开更多
关键词 快速迭代滤波分(FIF) 最大二阶循环平稳卷积(cycbd) 滚动轴承 特征提取 循环频率
下载PDF
基于连续交叉小波相干分析和自适应CYCBD的轴承故障诊断 被引量:3
3
作者 杨岗 秦礼目 +1 位作者 吕琨 李恒奎 《振动与冲击》 EI CSCD 北大核心 2023年第21期17-28,共12页
最大二阶循环平稳指标盲解卷积(maximum second-order cyclostationarity blind deconvolution,CYCBD)能从强背景噪声信号中恢复周期脉冲,是轴承故障诊断的有效方法。故障特征频率是CYCBD的关键参数,由于滚动轴承存在制造误差、滚子滑... 最大二阶循环平稳指标盲解卷积(maximum second-order cyclostationarity blind deconvolution,CYCBD)能从强背景噪声信号中恢复周期脉冲,是轴承故障诊断的有效方法。故障特征频率是CYCBD的关键参数,由于滚动轴承存在制造误差、滚子滑移等现象,导致真实的故障特征频率与理论值存在偏差,降低了CYCBD的有效性。同时,故障轴承测试信号中含有大量噪声和谐波干扰,也降低了CYCBD的故障特征提取能力。对此,提出了一种基于连续交叉小波相干分析和自适应CYCBD的轴承故障诊断方法,首先,利用正常轴承、故障轴承测试信号的交叉小波相干分析获取轴承故障共振频带。其次,基于3种归一化的周期检测指标提出一种新的周期检测技术以获取真实的轴承故障特征频率。最后,基于轴承故障共振频带信号和真实轴承故障特征频率进行CYCBD滤波,并针对滤波信号进行Teager能量算子解调分析得到能量频谱,从而进行轴承故障诊断。仿真信号和高速列车牵引电机轴承试验信号的分析结果表明,该方法能够有效识别轴承故障特征,且优于传统的CYCBD方法。 展开更多
关键词 最大二阶循环平稳指标卷积方法(cycbd) 连续交叉小波相干分析 轴承故障周期检测技术 高速列车牵引电机轴承 故障诊断
下载PDF
Infogram和参数优化CYCBD在滚动轴承复合故障特征分离中的应用 被引量:1
4
作者 刘桂敏 吴建德 +1 位作者 李卓睿 李祥 《振动与冲击》 EI CSCD 北大核心 2022年第10期55-65,共11页
针对滚动轴承复合故障特征难以分离的问题,提出了一种基于Infogram和参数优化最大二阶循环平稳盲解卷积(maximum second-order cyclostationarity blind deconvolution,CYCBD)的复合故障特征分离方法。首先,采用Infogram方法分析故障信... 针对滚动轴承复合故障特征难以分离的问题,提出了一种基于Infogram和参数优化最大二阶循环平稳盲解卷积(maximum second-order cyclostationarity blind deconvolution,CYCBD)的复合故障特征分离方法。首先,采用Infogram方法分析故障信号,选取最优带通滤波器,获得冲击性和循环平稳性最强的频带信号;其次,根据理论故障频率,设定CYCBD的循环频率集,并以包络谱稀疏度为依据,自适应选择CYCBD的滤波器长度;再次,对获得的频带信号进行解卷积运算,提取不同频率的故障冲击成分,实现故障分离;最后,对分离出的各故障成分进行包络解调分析,根据故障特征频率,识别故障类型。通过对仿真信号、西安交大-昇阳科技联合实验室(Xi’an Jiaotong University-Changxing Sumyoung Technology,XJTU-SY)的轴承试验数据分析,证明了所提方法可以有效实现故障特征分离。在此基础上,通过自制试验平台实测数据,进一步论证了该方法的可行性。 展开更多
关键词 复合故障 Infogram 最大二阶循环平稳卷积(cycbd) 包络谱稀疏度
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部