期刊文献+
共找到65篇文章
< 1 2 4 >
每页显示 20 50 100
基于最大池的谱特征匹配算法
1
作者 鲍文霞 余国芬 +1 位作者 胡根生 阎少梅 《计算机工程与科学》 CSCD 北大核心 2018年第3期494-499,共6页
为了提高基于谱特征的图像匹配算法的精度和鲁棒性,提出了一种基于最大池的谱特征匹配算法。首先,利用图像特征点邻域信息提取具有旋转不变性和亮度线性变化不变性的谱特征;其次,将以谱特征描述的特征点作为节点、特征点之间的欧氏距离... 为了提高基于谱特征的图像匹配算法的精度和鲁棒性,提出了一种基于最大池的谱特征匹配算法。首先,利用图像特征点邻域信息提取具有旋转不变性和亮度线性变化不变性的谱特征;其次,将以谱特征描述的特征点作为节点、特征点之间的欧氏距离作为边构造属性关系图,将图像匹配问题转化为图匹配问题;最后,引入最大池匹配策略获取图匹配结果。大量实验结果表明,该算法提高了谱特征匹配算法的精度和鲁棒性。 展开更多
关键词 谱特征 最大池 图像匹配
下载PDF
基于最大池图匹配的形变目标跟踪方法 被引量:7
2
作者 王治丹 蒋建国 齐美彬 《电子学报》 EI CAS CSCD 北大核心 2017年第3期704-711,共8页
该文提出了一种基于最大池图匹配的形变目标跟踪算法,适用于跟踪目标产生较大形变或者严重遮挡等场合.此方法首先将目标搜索区域过分割为候选目标部件并建立动态图表示,即目标部件的表象特征和它们之间的几何位置关系.然后采用最大池图... 该文提出了一种基于最大池图匹配的形变目标跟踪算法,适用于跟踪目标产生较大形变或者严重遮挡等场合.此方法首先将目标搜索区域过分割为候选目标部件并建立动态图表示,即目标部件的表象特征和它们之间的几何位置关系.然后采用最大池图匹配算法,得到目标图和候选图中部件的匹配关系,从而确定出目标位置的置信图.联合考虑目标整体和目标部件对目标位置的支持,投票决定出精确的目标位置.在各种形变目标的跟踪序列测试下,该算法与其他跟踪器的对比验证了其有效性和鲁棒性. 展开更多
关键词 视觉目标跟踪 动态图表示 最大池图匹配
下载PDF
结合MACH滤波最大池化及多类SVM的行为识别 被引量:2
3
作者 何俊林 赵晓亮 +1 位作者 孙连海 甘胜江 《计算机工程与设计》 北大核心 2017年第12期3431-3435,共5页
提出一种人体行为识别方法。构建MACH滤波器组,对视频片段的三维时空体进行滤波,得到时空相关体;采用三层最大池化方法提取时空相关体的特征向量,采用高斯隶属函数对池化特征向量进行扩展;构建多类SVM分类器并进行特征分类,识别行为类... 提出一种人体行为识别方法。构建MACH滤波器组,对视频片段的三维时空体进行滤波,得到时空相关体;采用三层最大池化方法提取时空相关体的特征向量,采用高斯隶属函数对池化特征向量进行扩展;构建多类SVM分类器并进行特征分类,识别行为类别。在ADL和UCF Sports两个国际上通用的人体行为数据集上进行人体行为识别实验,实验结果表明,该方法的识别率高于现有的人体行为识别方法,对不同人体行为的区分能力更强。 展开更多
关键词 行为识别 MACH滤波 最大池 多类支持向量机 高斯隶属函数
下载PDF
基于自适应图卷积和注意力池化的点云分类与分割
4
作者 刘玉珍 张冬霞 陶志勇 《计算机工程与科学》 CSCD 北大核心 2024年第5期872-880,共9页
针对现有点云分类与分割方法使用最大池化聚合局部邻域特征,导致最大值以外的重要信息丢失的缺陷,提出一种结合自适应图卷积AdaptConv和注意力池化AP的点云分类与分割网络。首先,采用K近邻算法构建点云局部图结构,根据点的特征生成自适... 针对现有点云分类与分割方法使用最大池化聚合局部邻域特征,导致最大值以外的重要信息丢失的缺陷,提出一种结合自适应图卷积AdaptConv和注意力池化AP的点云分类与分割网络。首先,采用K近邻算法构建点云局部图结构,根据点的特征生成自适应卷积核,灵活精确地捕获点云的局部邻域特征;其次,为有效提高特征聚合能力,采用注意力池化定义能量函数得到权重值,加权并聚合出更具代表性的点云局部特征;最后,堆叠自适应图卷积和注意力池化逐层提取全局特征,提高网络的分类和分割精度。实验结果表明,相较基准方法,点云分类的平均类别精度提升0.9%,部件分割和语义分割的平均交并比分别提升0.8%和0.3%,证明所提方法可有效提升点云分类与分割的准确率,具有较高的鲁棒性。 展开更多
关键词 自适应图卷积 注意力 能量函数 最大池
下载PDF
基于分形和分理论的分形池化算法
5
作者 肖莎莎 高哲 +2 位作者 贾凯 焦芷媛 柴浩宇 《微电子学与计算机》 2024年第7期1-7,共7页
传统池化操作既不能客观地评价池化区域中数据之间的差异性,也不能有效地保留池化区域中鉴别性特征。为解决这类问题,提出了一种基于分形和分理论,且能够根据每个特征图各通道中数据间的差异性,自行地选择最优池化策略的分形池化算法。... 传统池化操作既不能客观地评价池化区域中数据之间的差异性,也不能有效地保留池化区域中鉴别性特征。为解决这类问题,提出了一种基于分形和分理论,且能够根据每个特征图各通道中数据间的差异性,自行地选择最优池化策略的分形池化算法。首先,引入分形和分的定义,构造分形池化算子和训练误差的反向传播算法。该算子不仅包括最大池化、平均池化,还能够降低训练误差。然后,在算法实现的过程中,根据每个特征图各通道中数据间的差异性自适应地整定阶次,以确定池化区域中每个数据的训练权重。最后,在不同数据集和不同架构上进行了大量分类性能实验,验证了所提出的方法比传统池化方法和混合池化都取得了更好的分类效果。 展开更多
关键词 分形和分 最大池 平均 分形 分类
下载PDF
基于改进残差池化层的纹理识别 被引量:1
6
作者 郭锐 熊风光 +2 位作者 谢剑斌 尹宇慧 刘磊 《计算机技术与发展》 2023年第9期37-44,共8页
纹理一直是物体图像最重要的特征之一。针对现有纹理识别模型在复杂数据集下识别准确率不高的问题,提出一种基于改进残差池化层的纹理识别算法。首先,提出多维特征融合模块,在纹理识别模型中同时利用高层特征和低层特征来提取更加有效... 纹理一直是物体图像最重要的特征之一。针对现有纹理识别模型在复杂数据集下识别准确率不高的问题,提出一种基于改进残差池化层的纹理识别算法。首先,提出多维特征融合模块,在纹理识别模型中同时利用高层特征和低层特征来提取更加有效的纹理特征;其次,对残差池化层进行改进,在原残差池化层的基础上,引入全局最大池化支路,为纹理识别模型增加全局空间结构观察,将原残差池化层与全局最大池化支路得到的特征向量进行拼接后作为纹理特征,提升纹理识别的准确率;再次,应用局部二值模式辅助识别策略,使用局部二值模式编码映射图像为纹理识别模型提供辅助信息;最后,将得到的纹理特征输入到分类层中,得到纹理识别结果。与现有的纹理识别方法B-CNN、Deep filter banks、Deep TEN、TEX-Net-LF、locality-aware coding、DRP-Net相比,该方法具有更好的纹理识别效果。 展开更多
关键词 纹理识别 残差化层 全局最大池 多维特征融合模块 多尺度特征
下载PDF
基于Sobel算子的池化算法设计 被引量:1
7
作者 冯松松 王斌君 《科学技术与工程》 北大核心 2023年第3期1145-1151,共7页
池化算法是卷积神经网络中用于特征降维、参数压缩、扩大感受野的重要一层。针对现有的池化方法没有充分考虑到池化前特征图的整体内容及风格特征分布问题,提出了一种通过Sobel算子对卷积后的特征图计算每个特征点的梯度值,并根据梯度... 池化算法是卷积神经网络中用于特征降维、参数压缩、扩大感受野的重要一层。针对现有的池化方法没有充分考虑到池化前特征图的整体内容及风格特征分布问题,提出了一种通过Sobel算子对卷积后的特征图计算每个特征点的梯度值,并根据梯度值分布确定每个池化窗口取最大值、均值或者最小值的池化算法。该算法充分考虑了特征图池化前后的整体内容及风格特征分布,保持了特征图的整体不变性。实验表明,该池化算法在VGG、ResNet等经典网络架构上取得了优异性能,具有普适性,可用来替代常用的最大池化、平均池化。 展开更多
关键词 卷积神经网络 最大池 平均 最小 SOBEL算子
下载PDF
融合Inception V1-CBAM-CNN的轴承剩余寿命预测模型 被引量:2
8
作者 余江鸿 彭雄露 +2 位作者 刘涛 杨文 叶帅 《机电工程》 北大核心 2024年第1期107-114,共8页
针对现有的滚动轴承剩余寿命(RUL)预测方法精度低、轴承健康指标(HI)构建困难等问题,提出了一种基于卷积神经网络(CNN)并融合Inception V1模块和卷积注意力机制模块(CBAM)的滚动轴承RUL预测模型。首先,在CNN中添加了CBAM机制,并进行了... 针对现有的滚动轴承剩余寿命(RUL)预测方法精度低、轴承健康指标(HI)构建困难等问题,提出了一种基于卷积神经网络(CNN)并融合Inception V1模块和卷积注意力机制模块(CBAM)的滚动轴承RUL预测模型。首先,在CNN中添加了CBAM机制,并进行了加权处理,在通道和空间维度对重要特征进行了强化,对次要特征进行了抑制,通过添加改进的InceptionV1模块,提高了CNN通道间信息交互水平,全面提取了退化特征;然后,进行了网络优化,采用全局最大池化(GMP)方法对模型进行了简化,采用Dropout和批量归一化(BN)方法,避免了过拟合,提高了精度,且克服了训练时出现的梯度消失问题;最后,对数据进行了处理,将降噪后的信号重组为三维张量,将其作为HI,构建了退化标签,引入了评价指标,采用PHM2012轴承数据集进行了实验验证,在3种工况下将其与深度神经网络(DNN)、CNN方法、结合注意力机制的残差网络方法(ResNet)进行了对比。研究结果表明:该方法在变负载条件下的平均RMSE为0.033,较其他方法的RMSE值分别降低了86%、78%和69%,在预测精度和泛化能力方面具有明显优势。 展开更多
关键词 滚动轴承 剩余使用寿命 Inception V1模块 卷积注意力机制模块 卷积神经网络 全局最大池 批量归一化
下载PDF
基于改进YOLOv8的煤矿输送带异物检测 被引量:1
9
作者 洪炎 汪磊 +2 位作者 苏静明 汪瀚涛 李木石 《工矿自动化》 CSCD 北大核心 2024年第6期61-69,共9页
现有基于深度学习的输送带异物检测模型较大,难以在边缘设备部署,且对不同尺寸异物和小目标异物存在错检、漏检情况。针对上述问题,提出一种基于改进YOLOv8的煤矿输送带异物检测方法。采用深度可分离卷积、压缩和激励(SE)网络将YOLOv8... 现有基于深度学习的输送带异物检测模型较大,难以在边缘设备部署,且对不同尺寸异物和小目标异物存在错检、漏检情况。针对上述问题,提出一种基于改进YOLOv8的煤矿输送带异物检测方法。采用深度可分离卷积、压缩和激励(SE)网络将YOLOv8主干网络中C2f模块的Bottleneck重新构建为DSBlock,在保持模型轻量化的同时提升检测性能;为增强对不同尺寸目标物体信息的获取能力,引入高效通道注意力(ECA)机制,并对ECA的输入层进行自适应平均池化和自适应最大池化操作,得到跨通道交互MECA模块,以增强模块的全局视觉信息,进一步提升异物识别精度;将YOLOv8的3个检测头修改为4个轻量化小目标检测头,以增强对小目标的敏感性,有效降低小目标异物的漏检率和错检率。实验结果表明:改进YOLOv8的精确度达91.69%,mAP@50达92.27%,较YOLOv8分别提升了3.09%和4.07%;改进YOLOv8的检测速度达73.92帧/s,可充分满足煤矿输送带异物实时检测的需求;改进YOLOv8的精确度、mAP@50、参数量、权重大小和每秒浮点运算数均优于SSD,Faster-RCNN,YOLOv5,YOLOv7-tiny等主流目标检测算法。 展开更多
关键词 输送带异物检测 YOLOv8 SE网络 高效通道注意力机制 轻量化 小目标检测 自适应平均 自适应最大池
下载PDF
一种融合多尺度技术和并行网络的DR检测方法
10
作者 陈宇 徐仕豹 《哈尔滨理工大学学报》 CAS 北大核心 2024年第1期87-95,共9页
针对糖尿病视网膜病变(DR)检测模型在下采样过程中关键信息丢失和模型鲁棒性差的问题,构建一个PM-Net模型(Parallel Multi-scale Network)。在下采样过程中,利用信息增强的方式设计了多尺度最大池化和多尺度卷积模块并对ResNet-50改进... 针对糖尿病视网膜病变(DR)检测模型在下采样过程中关键信息丢失和模型鲁棒性差的问题,构建一个PM-Net模型(Parallel Multi-scale Network)。在下采样过程中,利用信息增强的方式设计了多尺度最大池化和多尺度卷积模块并对ResNet-50改进。进一步,为了提高模型的鲁棒性,使用双分支的架构对模型进行扩展。提出的多尺度模块使得模型在下采样的过程中获得了更加丰富的视网膜眼底图像特征,从而提高了DR检测的性能,同时提出的双分支模型在DR检测过程中用局部信息辅助全局信息保证了模型的鲁棒性。模型在EyePACS、DDR和私有数据集进行了实验验证。实验结果表明:与主流的模型相比,本模型在EyePACS数据集上的准确率和二次加权Kappa分数分别提高了2.58%和1.31%。 展开更多
关键词 糖尿病视网膜病变 多尺度 并行网络 最大池 ResNet-50
下载PDF
融合注意力机制和二次特征提取的ResNet小样本农作物病虫害识别
11
作者 汪志立 王定成 +3 位作者 曹蓉 郑梦丽 刘亚鹏 卓欣 《计算机系统应用》 2024年第9期208-215,共8页
针对传统机器学习方法对于小样本和多类别的农作物叶片病虫害识别效果和时间不理想的问题,本文利用改进的ResNet模型来实现农作物病害识别.通过加入dropout层、激活函数、最大池化层和注意力机制来提高模型的鲁棒性、特征捕捉能力、实... 针对传统机器学习方法对于小样本和多类别的农作物叶片病虫害识别效果和时间不理想的问题,本文利用改进的ResNet模型来实现农作物病害识别.通过加入dropout层、激活函数、最大池化层和注意力机制来提高模型的鲁棒性、特征捕捉能力、实现了用较低的模型参数量来提高病虫害识别的准确率.首先对从公共数据集Plant Village获取的图像进行预处理和增强,将ReLU激活函数替换为PReLU,解决ReLU函数在小于0部分神经元坏死的问题;然后在全局平均池化层之前加入dropout层,设置合理的阈值,有效避免过拟合现象的发生,增强模型的鲁棒性;此外,在dropout与全局平均池化层之间加入最大池化层,不仅能扩大神经元的感受野,还能帮助模型获取局部病虫害的最显著特征,减小图片背景的噪声影响,实现二次特征提取;最后嵌入CBAM注意力机制,使模型自动学习输入特征图中最重要的通道信息,并对其进行通道与空间之间加权,从而更好地捕捉图像中的语义信息.实验结果表明,改进后的模型对测试集识别准确度达99.15%,模型参数量仅为9.13M,与Xception、InceptionV3、原ResNet等模型相比,准确率分别超过了1.01,0.68,0.59个百分点,降低了模型参数量,为农作物病虫害识别提供了一种先进的深度学习方法. 展开更多
关键词 病虫害识别 注意力机制 迁移学习 最大池 激活函数PReLU
下载PDF
池化和注意力相结合的新闻文本分类方法 被引量:4
12
作者 陶永才 杨朝阳 +1 位作者 石磊 卫琳 《小型微型计算机系统》 CSCD 北大核心 2019年第11期2393-2397,共5页
信息时代互联网上产生了海量的文本数据,它们蕴含着巨大的商业和科研价值,由此文本分类技术得到了广泛的关注.文本分类在信息检索等应用领域占据着重要地位,同时也是自然语言处理等研究的关键技术.本文针对新闻文本的特点以及深度学习... 信息时代互联网上产生了海量的文本数据,它们蕴含着巨大的商业和科研价值,由此文本分类技术得到了广泛的关注.文本分类在信息检索等应用领域占据着重要地位,同时也是自然语言处理等研究的关键技术.本文针对新闻文本的特点以及深度学习分类方法训练时间长的问题,提出了一种池化和注意力相结合的模型,并将其应用于中文新闻文本分类.该模型首先利用最大池化和平均池化提取出文本特征,然后利用注意力机制为句子生成权重,使用两者的拼接结果进行分类.模型在NLPCC2014新闻文本分类的数据集上进行了实验,一级类别的分类正确率达到了83. 96%,接近该数据集上的最优结果,而且比标准深度学习算法的收敛时间更短. 展开更多
关键词 文本分类 注意力机制 最大池 机器学习
下载PDF
基于检测增强型YOLOv3-tiny的道路场景行人检测
13
作者 田亮 金积德 郑庆祥 《江苏大学学报(自然科学版)》 CAS 北大核心 2024年第4期441-448,共8页
为了给驾驶员提供实时准确的行人信息、减少交通事故的发生,提出一种检测增强型YOLOv3-tiny(detection of enhanced YOLOv3-tiny,DOEYT)行人检测算法.创建鲁棒的特征提取网络,首先使用非对称最大池化进行下采样,防止随着感受野增大行人... 为了给驾驶员提供实时准确的行人信息、减少交通事故的发生,提出一种检测增强型YOLOv3-tiny(detection of enhanced YOLOv3-tiny,DOEYT)行人检测算法.创建鲁棒的特征提取网络,首先使用非对称最大池化进行下采样,防止随着感受野增大行人横向特征的丢失;其次使用Hardswish作为卷积层的激活函数优化网络性能;最后使用GC(globe context)自注意力机制获得全文特征信息.在分类回归网络部分,采用三尺度检测策略,提升小尺度行人目标的检测精度;使用k-means++算法重新生成数据集锚框,提高网络收敛速度.构建行人检测数据集并分为训练集和测试集,对DOEYT算法的性能进行试验验证.结果表明,非对称最大池化、Hardswish函数、GC自注意力机制分别使平均准确率AP提高14.4%、7.9%、10.8%;DOEYT算法在测试集上检测的平均准确率高达91.2%,检测速度为103帧/s,可见该算法可快速准确地检测行人,降低交通事故发生的风险. 展开更多
关键词 行人检测 深度学习 卷积神经网络 非对称最大池 激活函数 自注意力机制 多尺度检测 YOLOv3-tiny
下载PDF
针对小样本改进的MobileViT算法
14
作者 张埠石 范红 《计算机工程与应用》 CSCD 北大核心 2024年第22期251-260,共10页
为了提高基于Transformer的MobileViT算法在小样本数据上的分类能力,加快算法的训练、收敛以及提高推理速度,提出了卷积池化下采样(convolutional maxpooling downsampling,CMP)和多分支残差特征融合(multi-branch residual feature fus... 为了提高基于Transformer的MobileViT算法在小样本数据上的分类能力,加快算法的训练、收敛以及提高推理速度,提出了卷积池化下采样(convolutional maxpooling downsampling,CMP)和多分支残差特征融合(multi-branch residual feature fusion,MR-FF)两个模块,并插入到MobileViT算法的模块中,分别用于降低模型的参数量,减少特征冗余和防止输入特征丢失。以最小参数量的MobileViT实验结果为例,在Oxford Flower102、Mini-ImageNet小样本数据集上进行了对比实验,插入以上两个模块的MobileViT在测试准确率上分别提升了12.9、9.4个百分点,在训练速度上提升了17%,在推理速度上提升了0.31 ms。当在MobileViT中只插入CMP模块时,可以在小于60 000张图像的小样本数据集上获得更高的分类准确度、最短的推理时间。最后与五种先进的图像分类算法进行了比较,改进的MobileVIT在小样本分类数据上取得了最优的测试结果。 展开更多
关键词 最大池 小样本 TRANSFORMER 图像分类
下载PDF
基于轻量级残差网络的苹果叶病识别
15
作者 周罕觅 陈佳庚 +4 位作者 代智光 牛晓丽 秦龙 向友珍 赵龙 《福建农业学报》 CAS CSCD 北大核心 2024年第1期83-92,共10页
【目的】解决卷积神经网络在复杂环境下识别率低、模型参数多等问题,为苹果叶病智能识别提供参考。【方法】本研究提出一种基于改进ResNet18的苹果叶病识别模型。首先,通过离线增强和在线增强两种方式解决数据不平衡和数据过拟合现象,... 【目的】解决卷积神经网络在复杂环境下识别率低、模型参数多等问题,为苹果叶病智能识别提供参考。【方法】本研究提出一种基于改进ResNet18的苹果叶病识别模型。首先,通过离线增强和在线增强两种方式解决数据不平衡和数据过拟合现象,增强模型的泛化能力;其次,引入缩放因子调整通道参数以减少网络参数量,并在下采样残差结构的恒等映射中用最大池化层代替1×1卷积完成下采样,去除图片中的冗余特征,增大模型的感受野;将ResNet18模型的第一层7×7卷积层替换为多尺度特征提取模块,提高模型对细小病斑的提取能力;最后,在特征提取网络中插入DenseBlock模块,加强模型对浅层有效特征的重用。【结果】改进后的ResNet18模型准确率为97.94%,比原模型高出0.88个百分点;模型大小为3.97MB,比原模型减小90.77%。与ShuffleNetv2、MobileNetv3、EfficientNet等轻量化模型和Inceptionv2、DenseNet、ResNet等经典模型相比,该模型拥有更好的性能。【结论】改进后的模型在复杂环境下能够准确识别苹果叶病,并且具有较少的模型参数,方便移植到移动设备上,为苹果叶病的智能诊断提供参考。 展开更多
关键词 ResNet18模型 多尺度特征提取 最大池化层 DenseBlock模块
下载PDF
基于最大池化稀疏编码的煤岩识别方法 被引量:13
16
作者 伍云霞 田一民 《工程科学学报》 EI CSCD 北大核心 2017年第7期981-987,共7页
针对现今煤岩图像识别方法的缺乏与不足,为了挖掘新的煤岩图像识别方法以及更好地处理高维煤岩图像数据,提出了基于最大池化稀疏编码的煤岩识别方法.本方法在提取煤岩图像特征时加入了池化操作,在分类识别时采用了集成分类器,即多个弱... 针对现今煤岩图像识别方法的缺乏与不足,为了挖掘新的煤岩图像识别方法以及更好地处理高维煤岩图像数据,提出了基于最大池化稀疏编码的煤岩识别方法.本方法在提取煤岩图像特征时加入了池化操作,在分类识别时采用了集成分类器,即多个弱分类器组成一个强分类器.实验结果表明:最大池化稀疏编码的特征提取方式能简单有效表达煤岩图像的纹理特征,大大增强煤岩图像的可区分性,获得较高的识别率,并且具有良好的识别稳定性.研究结果可为煤岩界面的自动识别提供新的思路和方法. 展开更多
关键词 煤岩识别 图像处理 最大池 稀疏编码 特征提取 集成分类
原文传递
一种基于BERT和池化操作的文本分类模型 被引量:2
17
作者 张军 邱龙龙 《计算机与现代化》 2022年第6期1-7,共7页
使用预训练语言模型的微调方法在以文本分类为代表的许多自然语言处理任务中取得了良好的效果,尤其以基于Transformer框架的BERT模型为典型代表。然而,BERT直接使用[CLS]对应的向量作为文本表征,没有从全局和局部考虑文本的特征,从而限... 使用预训练语言模型的微调方法在以文本分类为代表的许多自然语言处理任务中取得了良好的效果,尤其以基于Transformer框架的BERT模型为典型代表。然而,BERT直接使用[CLS]对应的向量作为文本表征,没有从全局和局部考虑文本的特征,从而限制了模型的分类性能。因此,本文提出一种引入池化操作的文本分类模型,使用平均池化、最大池化以及K-MaxPooling等池化方法从BERT输出矩阵中提取文本的表征向量。实验结果表明,与原始的BERT模型相比,本文提出的引入池化操作的文本分类模型具有更好的性能,在实验的所有文本分类任务中,其准确率和F1-Score值均优于BERT模型。 展开更多
关键词 文本分类 分类模型 BERT 平均 最大池 K-MaxPooling
下载PDF
面向文本分类的多头注意力池化RCNN模型 被引量:6
18
作者 翟一鸣 王斌君 +1 位作者 周枝凝 仝鑫 《计算机工程与应用》 CSCD 北大核心 2021年第12期155-160,共6页
针对经典循环卷积神经网络(RCNN)在池化层采用的最大池化策略较为单一,会忽略除最突出特征外的其他特征,影响分类精度的问题,提出基于多头注意力池化的循环卷积神经网络(MHAP-RCNN)模型。多头注意力池化可以充分考虑各特征对分类的贡献... 针对经典循环卷积神经网络(RCNN)在池化层采用的最大池化策略较为单一,会忽略除最突出特征外的其他特征,影响分类精度的问题,提出基于多头注意力池化的循环卷积神经网络(MHAP-RCNN)模型。多头注意力池化可以充分考虑各特征对分类的贡献,且能在训练过程中动态优化,有效缓解最大池化的单一性问题。在三个公开的文本分类数据集上进行实验,结果表明与经典RCNN及其他各模型相比,提出的模型具有更好的文本分类性能。 展开更多
关键词 文本分类 循环卷积神经网络 最大池 多头注意力
下载PDF
融合低通滤波器的孪生网络跟踪算法
19
作者 杨晓强 刘文昊 《计算机工程与应用》 CSCD 北大核心 2023年第23期237-245,共9页
针对深层次网络中的填充操作会破坏网络严格的平移不变性,提出了一种改进的孪生神经网络目标跟踪算法(BsSiamCAR)。在SiamCAR基础上,用ResNet-50网络对模板图像和搜索区域进行特征提取时,采用低通滤波器和最大池化相融合的策略,改善平... 针对深层次网络中的填充操作会破坏网络严格的平移不变性,提出了一种改进的孪生神经网络目标跟踪算法(BsSiamCAR)。在SiamCAR基础上,用ResNet-50网络对模板图像和搜索区域进行特征提取时,采用低通滤波器和最大池化相融合的策略,改善平移不变性对深层次网络的影响,提高深层次网络的稳定性。为了解决目标跟踪中背景干扰、尺度变化等复杂场景中的问题,引入通道注意力,注意力机制能够有选择性地突出对跟踪有利的特征通道,增强算法在复杂环境中的鲁棒性。实验结果表明,BsSiamCAR在OTB100、VOT2018、UAV123数据集上较SiamRPN和SiamCAR等多种算法在成功率和精度上均有提升,跟踪速度达到43 FPS。 展开更多
关键词 目标跟踪 孪生网络 低通滤波器 通道注意力 最大池
下载PDF
基于弱监督的改进Transformer在人群定位中的应用 被引量:2
20
作者 高辉 邓淼磊 +2 位作者 赵文君 陈法权 张德贤 《计算机工程与应用》 CSCD 北大核心 2023年第19期92-98,共7页
针对现有人群定位方法采用伪边界框或预先设计的定位图,需要复杂的预处理和后处理来获得头部位置的问题,提出一种基于弱监督的端到端人群定位网络LocalFormer。在特征提取阶段,将纯Transformer作为骨干网络,并对每个阶段的特征执行全局... 针对现有人群定位方法采用伪边界框或预先设计的定位图,需要复杂的预处理和后处理来获得头部位置的问题,提出一种基于弱监督的端到端人群定位网络LocalFormer。在特征提取阶段,将纯Transformer作为骨干网络,并对每个阶段的特征执行全局最大池化操作,提取更加丰富的人头细节信息。在编码器-解码器阶段,将聚合特征嵌入位置信息作为编码器的输入,且每个解码器层采用一组可训练嵌入作为查询,并将编码器最后一层的视觉特征作为键和值,解码后的特征用于预测置信度得分。通过二值化模块自适应优化阈值学习器,从而精确地二值化置信度图。在不同数据环境下对三个数据集进行实验,结果表明该方法实现了最佳定位性能。 展开更多
关键词 人群定位 弱监督 卷积神经网络 全局最大池 视觉Transformer
下载PDF
上一页 1 2 4 下一页 到第
使用帮助 返回顶部