依据最大间距判别准则(Maximum margin criterion,MMC)的基本原理,并结合模糊技术和张量理论,提出一种矩阵模式的模糊最大间距判别准则(Matrix model fuzzy maximum margin criterion,MFMMC),并在此基础上形成具有模糊聚类功能的双向二...依据最大间距判别准则(Maximum margin criterion,MMC)的基本原理,并结合模糊技术和张量理论,提出一种矩阵模式的模糊最大间距判别准则(Matrix model fuzzy maximum margin criterion,MFMMC),并在此基础上形成具有模糊聚类功能的双向二维无监督特征提取方法(Two-directional two-dimensional unsupervised feature extraction method with fuzzy clustering ability,(2D)2UFFCA).该方法不但能直接实现矩阵模式数据的模糊聚类,而且还可以对矩阵模式数据进行双向二维特征提取,实现特征降维.同时我们还从几何的直观含义出发,合理地设定矩阵模式的模糊最大间距判别准则中的调节参数γ,并从理论上证明其合理性.为了提高特征提取的效率,还提出一种能有效计算矩阵模式数据的投影变换矩阵的方法.实验结果表明该方法具有上述优势.展开更多
文摘线性拉普拉斯判别准则(Linear Laplacian discrimination,LLD)作为一种非线性特征提取方法得到了较为成功的运用.然而通过分析得知在具体使用LLD方法的过程中还会面临小样本以及如何确定原始样本空间类型的问题.因此,本文引入语境距离度量并结合最大间距判别准则的基本原理提出一种基于语境距离度量的拉普拉斯最大间距判别准则(Contextual-distance metric based Laplacian maximum margin criterion,CLMMC).该准则不但在一定程度上避免小样本问题,而且由于语境距离度量更关注输入样本簇内在的本质结构而不是原始样本空间的类型,从而降低了该准则对特定样本空间的依赖程度.同时通过引入计算语境距离度量的新算法并结合QR分解的基本原理,使得CLMMC在处理高维矢量模式数据时更具适应性和效率.并从理论上讨论CLMMC准则具有的基本性质以及与LLD准则的内在联系.实验证明CLMMC准则具有上述优势.