针对α稳定分布噪声环境下的自适应滤波问题,提出一种新的基于梯度范数的变步长归一化最小平均p范数(variable step-size normalized least mean p-norm,VSS-NLMP)算法。该算法首先对梯度矢量进行加权平滑,以减小梯度噪声的影响,然后利...针对α稳定分布噪声环境下的自适应滤波问题,提出一种新的基于梯度范数的变步长归一化最小平均p范数(variable step-size normalized least mean p-norm,VSS-NLMP)算法。该算法首先对梯度矢量进行加权平滑,以减小梯度噪声的影响,然后利用梯度矢量能够跟踪自适应过程的均方偏差这一特点,利用梯度矢量的欧氏范数控制步长的变化。给出了新算法的迭代过程,然后对其收敛性进行分析,仿真结果表明本算法较现有变步长NLMP算法有更好的性能。展开更多
Missing data are a problem in geophysical surveys, and interpolation and reconstruction of missing data is part of the data processing and interpretation. Based on the sparseness of the geophysical data or the transfo...Missing data are a problem in geophysical surveys, and interpolation and reconstruction of missing data is part of the data processing and interpretation. Based on the sparseness of the geophysical data or the transform domain, we can improve the accuracy and stability of the reconstruction by transforming it to a sparse optimization problem. In this paper, we propose a mathematical model for the sparse reconstruction of data based on the LO-norm minimization. Furthermore, we discuss two types of the approximation algorithm for the LO- norm minimization according to the size and characteristics of the geophysical data: namely, the iteratively reweighted least-squares algorithm and the fast iterative hard thresholding algorithm. Theoretical and numerical analysis showed that applying the iteratively reweighted least-squares algorithm to the reconstruction of potential field data exploits its fast convergence rate, short calculation time, and high precision, whereas the fast iterative hard thresholding algorithm is more suitable for processing seismic data, moreover, its computational efficiency is better than that of the traditional iterative hard thresholding algorithm.展开更多
The high resolution of DOA(direction of arrival) estimation could be obtained by using the min-norm algorithm. In this paper, the expression of the min-norm spatial spectrum based on acoustic vector-sensor(AVS) li...The high resolution of DOA(direction of arrival) estimation could be obtained by using the min-norm algorithm. In this paper, the expression of the min-norm spatial spectrum based on acoustic vector-sensor(AVS) linear arrays was presented and simulation study was carried out. Results of simulations indicated that left/right ambiguity could be removed and better performance for DOA estimation was obtainable when dealing with sources close to endfire than using pressure hydrophone linear arrays, and the interelement spacing was allowed to exceed the half-wavelength upper limit. A three-element vector hydrophone linear array with two meters interspace was designed. The AVS experiment was carried out at Songhua Lake in Jinlin Province. Experimental results show a high resolution tracking of targets can be obtained using the rain-norm algorithm.展开更多
文摘针对α稳定分布噪声环境下的自适应滤波问题,提出一种新的基于梯度范数的变步长归一化最小平均p范数(variable step-size normalized least mean p-norm,VSS-NLMP)算法。该算法首先对梯度矢量进行加权平滑,以减小梯度噪声的影响,然后利用梯度矢量能够跟踪自适应过程的均方偏差这一特点,利用梯度矢量的欧氏范数控制步长的变化。给出了新算法的迭代过程,然后对其收敛性进行分析,仿真结果表明本算法较现有变步长NLMP算法有更好的性能。
基金supported by the National Natural Science Foundation of China (Grant No.41074133)
文摘Missing data are a problem in geophysical surveys, and interpolation and reconstruction of missing data is part of the data processing and interpretation. Based on the sparseness of the geophysical data or the transform domain, we can improve the accuracy and stability of the reconstruction by transforming it to a sparse optimization problem. In this paper, we propose a mathematical model for the sparse reconstruction of data based on the LO-norm minimization. Furthermore, we discuss two types of the approximation algorithm for the LO- norm minimization according to the size and characteristics of the geophysical data: namely, the iteratively reweighted least-squares algorithm and the fast iterative hard thresholding algorithm. Theoretical and numerical analysis showed that applying the iteratively reweighted least-squares algorithm to the reconstruction of potential field data exploits its fast convergence rate, short calculation time, and high precision, whereas the fast iterative hard thresholding algorithm is more suitable for processing seismic data, moreover, its computational efficiency is better than that of the traditional iterative hard thresholding algorithm.
文摘The high resolution of DOA(direction of arrival) estimation could be obtained by using the min-norm algorithm. In this paper, the expression of the min-norm spatial spectrum based on acoustic vector-sensor(AVS) linear arrays was presented and simulation study was carried out. Results of simulations indicated that left/right ambiguity could be removed and better performance for DOA estimation was obtainable when dealing with sources close to endfire than using pressure hydrophone linear arrays, and the interelement spacing was allowed to exceed the half-wavelength upper limit. A three-element vector hydrophone linear array with two meters interspace was designed. The AVS experiment was carried out at Songhua Lake in Jinlin Province. Experimental results show a high resolution tracking of targets can be obtained using the rain-norm algorithm.