Microorganisms capable of solubilizing and mineralizing phosphorus (P) pools in soils are considered vital in promoting P bioavallability. The study was conducted to screen and isolate inorganic P-solubilizing bacte...Microorganisms capable of solubilizing and mineralizing phosphorus (P) pools in soils are considered vital in promoting P bioavallability. The study was conducted to screen and isolate inorganic P-solubilizing bacteria (IPSB) and organic P-mineralizing bacteria (OPMB) in soils taken from subtropical flooded and temperate non-flooded soils, and to compare inorganic P-solubilizing and organic P-solubilizing abilities between IPSB and OPMB. Ten OPMB strains were isolated and identified as Bacillus cereus and Bacillus megaterium, and five IPSB strains as B. megaterium, Burkholderia caryophyUi, Pseudomonas cichorii, and Pseudomonas syringae. P-solubilizing and -mineralizing abilities of the strains were measured using the methods taking cellular P into account. The IPSB strains exhibited inorganic P-solubilizing abilities ranging between 25.4-41.7 μg P mL^-1 and organic P-mineralizing abilities between 8.2-17.8μg P mL^-1. Each of the OPMB strains also exhibited both solubilizing and mineralizing abilities varying from 4.4 to 26.5 μg P mL^-1 and from 13.8 to 62.8 μg P mL^-1, respectively. For both IPSB and OPMB strains, most of the P mineralized from the organic P source was incorporated into the bacterial cells as cellular P. A significantly negative linear correlation (P 〈 0.05) was found between culture pH and P solubilized from inorganic P by OPMB strains. The results suggested that P solubilization and mineralization could coexist in the same bacterial strain.展开更多
Three phosphate extraction methods were used to investigate the dissolution, availability and transformation of Kunyang phosphate rock (KPR) in two surface acid soils. Dissolution was determined by measuring the incre...Three phosphate extraction methods were used to investigate the dissolution, availability and transformation of Kunyang phosphate rock (KPR) in two surface acid soils. Dissolution was determined by measuring the increase in the amounts of soluble and adsorbed inorganic phosphate fractions, and did not differ significantly among the three methods. Significant correlations were obtained among P fractions got by the three extraction methods. Dissolution continued until the end of the 90 day incubation period. At the end of the period, much of the applied phosphate recovered in both soils were in the Al and Fe P or in the hydroxide and bicarbonate extractable inorganic P fractions. The dissolution of KPR in the two soils was also similar: increased addition of phosphate rock resulted in decreased dissolution. The similarity in the order and extent of dissolution in the two soils was probably due to the similarity in each soil of several factors that are known to influence phosphate rock dissolution, namely low CEC, pH, P level, and base status; and high clay and free iron and aluminum oxide contents. The results suggested that KPR could be an alternative P source in the long, if not the short, term in the soils, provided that those factors influencing P availability in the soils are not limiting.展开更多
Phosphorus (P) is a major growth-limiting nutrient, and unlike the case of nitrogen (N), there is no large atmospheric source that can be made biologically available. Moreover, P governs crucial role in plant as i...Phosphorus (P) is a major growth-limiting nutrient, and unlike the case of nitrogen (N), there is no large atmospheric source that can be made biologically available. Moreover, P governs crucial role in plant as it stimulates root development and growth, gives plant rapid and vigorous start leading to better tillering and essential for many metabolic processes for seed formation. Soil microbes play very important role in bio-weathering and biodegradation. The microorganisms produce low molecular mass organic acids, which attack the phosphate structure and transform phosphorus from non-utilizable to the utilizable for the plants form. The test of the relative efficiency of isolated strains is carried out by selecting the microorganisms that are capable of producing a halo/clear zone on a plate owing to the production of organic acids into the surrounding medium. It is a well-known fact that as the particle size of rock phosphate decreases, the microbe mediated solubilization of rock phosphate increases in soil. In the present investigation, microbial solubilization of nano rock phosphate (〈 100 nm) particles was studied. Experimental results revealed that Pseudomonas striata solubilized 11.45% of the total P after 24 h of incubation from nano rock phosphate particles while 28.95% and 21.19% of the total P was solubilized by Aspergillus niger (black pigmented) and Aspergillus niger (green pigmented), respectively. It was also observed that Aspergillus niger has the higher ability to dissolve Udaipur rock phosphate than Pseudomonas striata.展开更多
The concentrations of phosphate (PO43 ), ammonium, nitrite, nitrate, silicate, dissolved organic nitrogen (DON), dissolved or- ganic phosphorus (DOP), particulate phosphorus (PP) and particulate nitrogen (PN...The concentrations of phosphate (PO43 ), ammonium, nitrite, nitrate, silicate, dissolved organic nitrogen (DON), dissolved or- ganic phosphorus (DOP), particulate phosphorus (PP) and particulate nitrogen (PN) along the salinity gradient were measured in the Changjiang Estuary in April 2007. The behavior of nutrient species along the continuum from the freshwater to the coastal zone is discussed. In the mixing zone between the riverine and marine waters, nitrate and phosphate behave non-conservatively, while silicate behaves conservatively. Nutrient import was quantified from the fiver load. Nutrient export to the sea was quantified from fiver discharge and from the salinity-nutrient gradient in the outer estuary. Using these data, a nitrogen and phosphorus budget was made. The internal estuarine fluxes played an important role in the nutrient estuarine fluxes, which accounted for approximately 41% of the nitrogen flux and 45% of the phosphorus flux. The mixing experiments in the laboratory generally reproduced well the inorganic process affecting nutrient dynamics in the Changjiang Estuary, indi- cating that the primary P and N transformation processes were phosphate and nitrate desorption along the salinity gradient.展开更多
基金the Scientific Research Foundation for the Returned Overseas Chinese Scholars, the Ministry of Education of the P.R. China.
文摘Microorganisms capable of solubilizing and mineralizing phosphorus (P) pools in soils are considered vital in promoting P bioavallability. The study was conducted to screen and isolate inorganic P-solubilizing bacteria (IPSB) and organic P-mineralizing bacteria (OPMB) in soils taken from subtropical flooded and temperate non-flooded soils, and to compare inorganic P-solubilizing and organic P-solubilizing abilities between IPSB and OPMB. Ten OPMB strains were isolated and identified as Bacillus cereus and Bacillus megaterium, and five IPSB strains as B. megaterium, Burkholderia caryophyUi, Pseudomonas cichorii, and Pseudomonas syringae. P-solubilizing and -mineralizing abilities of the strains were measured using the methods taking cellular P into account. The IPSB strains exhibited inorganic P-solubilizing abilities ranging between 25.4-41.7 μg P mL^-1 and organic P-mineralizing abilities between 8.2-17.8μg P mL^-1. Each of the OPMB strains also exhibited both solubilizing and mineralizing abilities varying from 4.4 to 26.5 μg P mL^-1 and from 13.8 to 62.8 μg P mL^-1, respectively. For both IPSB and OPMB strains, most of the P mineralized from the organic P source was incorporated into the bacterial cells as cellular P. A significantly negative linear correlation (P 〈 0.05) was found between culture pH and P solubilized from inorganic P by OPMB strains. The results suggested that P solubilization and mineralization could coexist in the same bacterial strain.
文摘Three phosphate extraction methods were used to investigate the dissolution, availability and transformation of Kunyang phosphate rock (KPR) in two surface acid soils. Dissolution was determined by measuring the increase in the amounts of soluble and adsorbed inorganic phosphate fractions, and did not differ significantly among the three methods. Significant correlations were obtained among P fractions got by the three extraction methods. Dissolution continued until the end of the 90 day incubation period. At the end of the period, much of the applied phosphate recovered in both soils were in the Al and Fe P or in the hydroxide and bicarbonate extractable inorganic P fractions. The dissolution of KPR in the two soils was also similar: increased addition of phosphate rock resulted in decreased dissolution. The similarity in the order and extent of dissolution in the two soils was probably due to the similarity in each soil of several factors that are known to influence phosphate rock dissolution, namely low CEC, pH, P level, and base status; and high clay and free iron and aluminum oxide contents. The results suggested that KPR could be an alternative P source in the long, if not the short, term in the soils, provided that those factors influencing P availability in the soils are not limiting.
文摘Phosphorus (P) is a major growth-limiting nutrient, and unlike the case of nitrogen (N), there is no large atmospheric source that can be made biologically available. Moreover, P governs crucial role in plant as it stimulates root development and growth, gives plant rapid and vigorous start leading to better tillering and essential for many metabolic processes for seed formation. Soil microbes play very important role in bio-weathering and biodegradation. The microorganisms produce low molecular mass organic acids, which attack the phosphate structure and transform phosphorus from non-utilizable to the utilizable for the plants form. The test of the relative efficiency of isolated strains is carried out by selecting the microorganisms that are capable of producing a halo/clear zone on a plate owing to the production of organic acids into the surrounding medium. It is a well-known fact that as the particle size of rock phosphate decreases, the microbe mediated solubilization of rock phosphate increases in soil. In the present investigation, microbial solubilization of nano rock phosphate (〈 100 nm) particles was studied. Experimental results revealed that Pseudomonas striata solubilized 11.45% of the total P after 24 h of incubation from nano rock phosphate particles while 28.95% and 21.19% of the total P was solubilized by Aspergillus niger (black pigmented) and Aspergillus niger (green pigmented), respectively. It was also observed that Aspergillus niger has the higher ability to dissolve Udaipur rock phosphate than Pseudomonas striata.
基金supported by the National Basic Research Program of China(2011CB403602)National Natural Science Foundation of China(41276070,40920164004)National Natural Science Foundation for Creative Research Groups(41221004)
文摘The concentrations of phosphate (PO43 ), ammonium, nitrite, nitrate, silicate, dissolved organic nitrogen (DON), dissolved or- ganic phosphorus (DOP), particulate phosphorus (PP) and particulate nitrogen (PN) along the salinity gradient were measured in the Changjiang Estuary in April 2007. The behavior of nutrient species along the continuum from the freshwater to the coastal zone is discussed. In the mixing zone between the riverine and marine waters, nitrate and phosphate behave non-conservatively, while silicate behaves conservatively. Nutrient import was quantified from the fiver load. Nutrient export to the sea was quantified from fiver discharge and from the salinity-nutrient gradient in the outer estuary. Using these data, a nitrogen and phosphorus budget was made. The internal estuarine fluxes played an important role in the nutrient estuarine fluxes, which accounted for approximately 41% of the nitrogen flux and 45% of the phosphorus flux. The mixing experiments in the laboratory generally reproduced well the inorganic process affecting nutrient dynamics in the Changjiang Estuary, indi- cating that the primary P and N transformation processes were phosphate and nitrate desorption along the salinity gradient.