Multi-channel magnetic stimulation is an efficient method to improve the conventional magnetic stimulation. A multi-channel magnetic brain stimulator was developed and the distribution of magnetic field was calculated...Multi-channel magnetic stimulation is an efficient method to improve the conventional magnetic stimulation. A multi-channel magnetic brain stimulator was developed and the distribution of magnetic field was calculated by finite-element analysis software-ANSYS. The results show that when five coils work simultaneously, the area where the magnetic flux density is larger than 0.01 T would expand to almost the whole brain region, and the magnetic stimulation depth would be improved. Experiments were performed on ten subjects (mean age 25) using the stimulator, and the EEG power spectrums before and after stimulation were analyzed. The experimental results show that the beta component of EEG obviously increases after magnetic stimulation, and the effect is more obvious by using more coils simultaneously because of the deeper stimulation.展开更多
We present a 3-D finite element (FE) approach to find the optimal distribution of seismic reinforcement force to secure high arch dam-abutment structures against certain earthquake actions. Nonlinear FE time history a...We present a 3-D finite element (FE) approach to find the optimal distribution of seismic reinforcement force to secure high arch dam-abutment structures against certain earthquake actions. Nonlinear FE time history analysis is performed on the structure to find the seismic responses, using the associated elastic-perfectly plastic material description. The concept of plastic complementary energy is introduced to structural dynamics to quantify the structure's resistance against the seismic action throughout the time history and to indicate the critical moments when extreme extents of dynamic failure occur. Meanwhile the distributions of the unbalanced force at these critical moments reveal the dominant patterns of the dynamic failure. By the principle of minimum plastic complementary energy, the unbalanced force is just the counterforce of optimal reinforcement force to secure the self-unsupportable structure against the earthquake, which makes the seismic design more targeted and effective. Seismic design analysis is performed on Maji high arch dam-abutment structure. The results could to a large extent guide the seismic design, showing that several structural surfaces lying at the upper abutment are the most seismically vulnerable. This application indicates good applicability of this approach to large-scale projects.展开更多
基金Supported by National Natural Science Foundation of China (No.30350003)Science and Technology Development Foundation of Tianjin(No.20030219) .
文摘Multi-channel magnetic stimulation is an efficient method to improve the conventional magnetic stimulation. A multi-channel magnetic brain stimulator was developed and the distribution of magnetic field was calculated by finite-element analysis software-ANSYS. The results show that when five coils work simultaneously, the area where the magnetic flux density is larger than 0.01 T would expand to almost the whole brain region, and the magnetic stimulation depth would be improved. Experiments were performed on ten subjects (mean age 25) using the stimulator, and the EEG power spectrums before and after stimulation were analyzed. The experimental results show that the beta component of EEG obviously increases after magnetic stimulation, and the effect is more obvious by using more coils simultaneously because of the deeper stimulation.
基金supported by China National Key Research Program (Grant No. 90715041)China National Funds for Distinguished Young Scientists (Grant No. 50925931)
文摘We present a 3-D finite element (FE) approach to find the optimal distribution of seismic reinforcement force to secure high arch dam-abutment structures against certain earthquake actions. Nonlinear FE time history analysis is performed on the structure to find the seismic responses, using the associated elastic-perfectly plastic material description. The concept of plastic complementary energy is introduced to structural dynamics to quantify the structure's resistance against the seismic action throughout the time history and to indicate the critical moments when extreme extents of dynamic failure occur. Meanwhile the distributions of the unbalanced force at these critical moments reveal the dominant patterns of the dynamic failure. By the principle of minimum plastic complementary energy, the unbalanced force is just the counterforce of optimal reinforcement force to secure the self-unsupportable structure against the earthquake, which makes the seismic design more targeted and effective. Seismic design analysis is performed on Maji high arch dam-abutment structure. The results could to a large extent guide the seismic design, showing that several structural surfaces lying at the upper abutment are the most seismically vulnerable. This application indicates good applicability of this approach to large-scale projects.