期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
三维有限元后处理程序设计
1
作者 仲梁维 《微型电脑应用》 1997年第1期62-65,67,共4页
讨论了三维有限元后处理程序的实现过程,研究了内外部消隐及等应力线形成的方法,对奇异面及变型图进行了讨论。
关键词 有限元法 有限元法后处理 CAD 程序设计
下载PDF
GLOBAL SUPERCONVERGENCE ANALYSIS OF WILSON ELEMENT FOR SOBOLEV AND VISCOELASTICITY TYPE EQUATIONS 被引量:7
2
作者 JINDayong LIUTang 《Journal of Systems Science & Complexity》 SCIE EI CSCD 2004年第4期452-463,共12页
In this paper the Wilson nonconforming finite element is employed to solve Sobolev and viscoelasticity type equations. By means of post-processing technique, global superconvergence estimates are obtained for quasi-un... In this paper the Wilson nonconforming finite element is employed to solve Sobolev and viscoelasticity type equations. By means of post-processing technique, global superconvergence estimates are obtained for quasi-uniform rectangular meshes. Finally, an error correction scheme is presented. 展开更多
关键词 wilson finite element post-processing method global superconvergence errorcorrection
原文传递
Computing the lower and upper bounds of Laplace eigenvalue problem:by combining conforming and nonconforming finite element methods 被引量:10
3
作者 LUO FuSheng LIN Qun XIE HeHu 《Science China Mathematics》 SCIE 2012年第5期1069-1082,共14页
We introduce some ways to compute the lower and upper bounds of the Laplace eigenvalue problem.By using the special nonconforming finite elements,i.e.,enriched Crouzeix-Raviart element and extended Q1ro t,we get the l... We introduce some ways to compute the lower and upper bounds of the Laplace eigenvalue problem.By using the special nonconforming finite elements,i.e.,enriched Crouzeix-Raviart element and extended Q1ro t,we get the lower bound of the eigenvalue.Additionally,we use conforming finite elements to do the postprocessing to get the upper bound of the eigenvalue,which only needs to solve the corresponding source problems and a small eigenvalue problem if higher order postprocessing method is implemented.Thus,we can obtain the lower and upper bounds of the eigenvalues simultaneously by solving eigenvalue problem only once.Some numerical results are also presented to demonstrate our theoretical analysis. 展开更多
关键词 lower bound upper bound ECR EQ1ro t eigenvalue problem POSTPROCESSING
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部