目的为提高医疗服务机器人同时定位与地图构建(SLAM)算法全局定位精度和实时性,提出基于点线特征SLAM(PL-SLAM)算法,并与ORB(oriented FAST and rotated BRIEF)-SLAM2算法进行比较。方法PL-SLAM算法在特征提取过程中在点特征的基础上增...目的为提高医疗服务机器人同时定位与地图构建(SLAM)算法全局定位精度和实时性,提出基于点线特征SLAM(PL-SLAM)算法,并与ORB(oriented FAST and rotated BRIEF)-SLAM2算法进行比较。方法PL-SLAM算法在特征提取过程中在点特征的基础上增加线段特征,根据融合后的点线特征,在复杂医疗环境内进行地图创建与全局定位。利用公开数据集EuRoc和KITTI对比PL-SLAM算法与ORB-SLAM2算法,测试医疗服务机器人的自主导航综合性能。结果与ORB-SLAM2算法相比,PL-SLAM算法在弱纹理环境下能够提取较多的点线特征,定位精度和实时性均有较大提升。其中旋转误差较ORB-SLAM2算法减小42.2%,运算速度提高55.9%。结论PL-SLAM算法能够有效提高医疗服务机器人全局定位精度和实时性。展开更多
文中提出一种将激光雷达和轮式里程计相融合的方法,用于提升SLAM (Simultaneous Localization and Mapping)算法前端点云配准效率和点云畸变矫正效果。在点云配准方面,对PL-ICP算法做出改进,首先对激光点云进行预处理去除无效点,再利用...文中提出一种将激光雷达和轮式里程计相融合的方法,用于提升SLAM (Simultaneous Localization and Mapping)算法前端点云配准效率和点云畸变矫正效果。在点云配准方面,对PL-ICP算法做出改进,首先对激光点云进行预处理去除无效点,再利用自适应体素滤波方法对激光点云进行下采样,在保留点云特征的同时将点云稀疏化,从而减少点云配准的计算量,利用轮式里程计的测量值为点云配准提供初值,提高点云配准的效率和定位效果。在点云畸变矫正方面,按照轮式里程计测量的机器人位姿的时间戳,利用拉格朗日线性插值法对点云配准配得到的机器人位姿进行线性插值,利用EKF算法融合轮式里程计测量的位姿和点云配准插值得到的位姿对轮式里程计的测量误差做出矫正,然后为激光点云提供运动补偿,从而去除点云畸变提升SLAM算法定位和建图效果。利用ROS搭建仿真环境验证了本文提出的算法的有效性。展开更多
同时定位与地图构建(simultaneous localization and mapping,SLAM)作为计算机视觉中的热门方向,在无人驾驶、移动机器人等领域中发挥着重要的作用。由于线特征在低纹理环境下的优势,越来越多的研究人员利用点线特征融合的方法提高SLAM...同时定位与地图构建(simultaneous localization and mapping,SLAM)作为计算机视觉中的热门方向,在无人驾驶、移动机器人等领域中发挥着重要的作用。由于线特征在低纹理环境下的优势,越来越多的研究人员利用点线特征融合的方法提高SLAM系统的精度和鲁棒性。文中首先简要阐述了传统的点特征SLAM系统在低纹理环境下的局限性,并对现有的视觉SLAM综述文献进行了总结;随后,对经典的点线SLAM方案进行了介绍,并总结了点线特征融合在前端、后端、闭环检测中的研究进展;最后,对点线SLAM未来的发展方向进行了展望。展开更多
文摘目的为提高医疗服务机器人同时定位与地图构建(SLAM)算法全局定位精度和实时性,提出基于点线特征SLAM(PL-SLAM)算法,并与ORB(oriented FAST and rotated BRIEF)-SLAM2算法进行比较。方法PL-SLAM算法在特征提取过程中在点特征的基础上增加线段特征,根据融合后的点线特征,在复杂医疗环境内进行地图创建与全局定位。利用公开数据集EuRoc和KITTI对比PL-SLAM算法与ORB-SLAM2算法,测试医疗服务机器人的自主导航综合性能。结果与ORB-SLAM2算法相比,PL-SLAM算法在弱纹理环境下能够提取较多的点线特征,定位精度和实时性均有较大提升。其中旋转误差较ORB-SLAM2算法减小42.2%,运算速度提高55.9%。结论PL-SLAM算法能够有效提高医疗服务机器人全局定位精度和实时性。
文摘文中提出一种将激光雷达和轮式里程计相融合的方法,用于提升SLAM (Simultaneous Localization and Mapping)算法前端点云配准效率和点云畸变矫正效果。在点云配准方面,对PL-ICP算法做出改进,首先对激光点云进行预处理去除无效点,再利用自适应体素滤波方法对激光点云进行下采样,在保留点云特征的同时将点云稀疏化,从而减少点云配准的计算量,利用轮式里程计的测量值为点云配准提供初值,提高点云配准的效率和定位效果。在点云畸变矫正方面,按照轮式里程计测量的机器人位姿的时间戳,利用拉格朗日线性插值法对点云配准配得到的机器人位姿进行线性插值,利用EKF算法融合轮式里程计测量的位姿和点云配准插值得到的位姿对轮式里程计的测量误差做出矫正,然后为激光点云提供运动补偿,从而去除点云畸变提升SLAM算法定位和建图效果。利用ROS搭建仿真环境验证了本文提出的算法的有效性。
文摘同时定位与地图构建(simultaneous localization and mapping,SLAM)作为计算机视觉中的热门方向,在无人驾驶、移动机器人等领域中发挥着重要的作用。由于线特征在低纹理环境下的优势,越来越多的研究人员利用点线特征融合的方法提高SLAM系统的精度和鲁棒性。文中首先简要阐述了传统的点特征SLAM系统在低纹理环境下的局限性,并对现有的视觉SLAM综述文献进行了总结;随后,对经典的点线SLAM方案进行了介绍,并总结了点线特征融合在前端、后端、闭环检测中的研究进展;最后,对点线SLAM未来的发展方向进行了展望。