期刊文献+
共找到171篇文章
< 1 2 9 >
每页显示 20 50 100
面向机器阅读理解的高质量藏语数据集构建 被引量:1
1
作者 孙媛 刘思思 +2 位作者 陈超凡 旦正错 赵小兵 《中文信息学报》 CSCD 北大核心 2024年第3期56-64,共9页
机器阅读理解是通过算法让机器根据给定的上下文回答问题,从而测试机器理解自然语言的程度。其中,数据集的构建是机器阅读理解的主要任务之一。目前,相关算法模型在大多数流行的英语数据集上都取得了显著的成绩,甚至超过了人类表现。但... 机器阅读理解是通过算法让机器根据给定的上下文回答问题,从而测试机器理解自然语言的程度。其中,数据集的构建是机器阅读理解的主要任务之一。目前,相关算法模型在大多数流行的英语数据集上都取得了显著的成绩,甚至超过了人类表现。但对于低资源语言,由于缺乏相应的数据集,机器阅读理解研究尚处于起步阶段。该文以藏语为例,人工构建了藏语机器阅读理解数据集(TibetanQA),其中包含20000个问题答案对和1513篇文章。该数据集的文章均来自云藏网,涵盖了自然、文化和教育等12个领域,问题形式多样且具有一定的难度。另外,该数据集在文章收集、问题构建、答案验证、回答多样性和推理能力等方面,均采用严格的流程以确保数据的质量,同时采用基于语言特征消融输入的验证方法说明了数据集的质量。最后,该文初步探索了三种经典的英语阅读理解模型在TibetanQA数据集上的表现,其结果难以媲美人类,这表明藏语机器阅读理解任务还需要更进一步的探索。 展开更多
关键词 机器阅读理解 低资源语言 藏语 数据集
下载PDF
面向机器阅读理解的边界感知方法
2
作者 刘青 陈艳平 +2 位作者 邹安琪 黄瑞章 秦永彬 《计算机应用》 CSCD 北大核心 2024年第7期2004-2010,共7页
针对现有的基于预训练语言模型的答案获取方法存在预测边界不够准确的问题,提出一种面向片段抽取式机器阅读理解(MRC)的边界感知方法。首先,在问题输入阶段引入特殊字符标记问题边界,通过增强问题语义信息的方式实现对问题边界的感知;其... 针对现有的基于预训练语言模型的答案获取方法存在预测边界不够准确的问题,提出一种面向片段抽取式机器阅读理解(MRC)的边界感知方法。首先,在问题输入阶段引入特殊字符标记问题边界,通过增强问题语义信息的方式实现对问题边界的感知;其次,在答案预测阶段,构建答案边界回归器,实现感知的问题边界语义信息与输出的预测答案边界语义信息的语义交互;最后,通过交互后的语义信息进一步调整存在偏差的预测答案边界,实现对预测答案的校准。实验结果表明,与SpanBERT(Span-based Bidirectional Encoder Representation from Transformers)相比,该方法在公共数据集SQuAD(Stanford Question Answering Dataset)1.1上的F1值提升了0.2个百分点、精确匹配(EM)值提升了0.9个百分点;在HotpotQA(Hotpot Question Answering)数据集上的F1值和EM值都提升了0.7个百分点;在NewsQA(News Question Answering)数据集上的F1值提升了2.8个百分点、EM值提升了3.3个百分点。可见,该方法能有效增强对问题边界信息的感知并且实现对预测答案边界的校准,有利于更好地理解和分析文本数据,在智能问答、智能客服等领域的应用中提高系统的准确性。 展开更多
关键词 机器阅读理解 问题边界感知 答案边界回归 片段抽取
下载PDF
Ti-Reader:基于注意力机制的藏文机器阅读理解端到端网络模型
3
作者 孙媛 陈超凡 +1 位作者 刘思思 赵小兵 《中文信息学报》 CSCD 北大核心 2024年第2期61-69,共9页
机器阅读理解旨在教会机器去理解一篇文章并且回答与之相关的问题。为了解决低资源语言上机器阅读理解模型性能低的问题,该文提出了一种基于注意力机制的藏文机器阅读理解端到端网络模型Ti-Reader。首先,为了编码更细粒度的藏文文本信息... 机器阅读理解旨在教会机器去理解一篇文章并且回答与之相关的问题。为了解决低资源语言上机器阅读理解模型性能低的问题,该文提出了一种基于注意力机制的藏文机器阅读理解端到端网络模型Ti-Reader。首先,为了编码更细粒度的藏文文本信息,将音节和词相结合进行词表示,然后采用词级注意力机制去关注文本中的关键词,利用重读机制去捕捉文章和问题之间的语义信息,自注意力机制去匹配问题与答案的隐变量本身,为答案预测提供更多的线索。最后,实验结果表明,Ti-Reader模型提升了藏文机器阅读理解的性能,同时在英文数据集SQuAD上也有较好的表现。 展开更多
关键词 机器阅读理解 注意力机制 端到端网络 藏文
下载PDF
基于MacBERT与对抗训练的机器阅读理解模型
4
作者 周昭辰 方清茂 +2 位作者 吴晓红 胡平 何小海 《计算机工程》 CAS CSCD 北大核心 2024年第5期41-50,共10页
机器阅读理解旨在让机器像人类一样理解自然语言文本,并据此进行问答任务。近年来,随着深度学习和大规模数据集的发展,机器阅读理解引起了广泛关注,但是在实际应用中输入的问题通常包含各种噪声和干扰,这些噪声和干扰会影响模型的预测... 机器阅读理解旨在让机器像人类一样理解自然语言文本,并据此进行问答任务。近年来,随着深度学习和大规模数据集的发展,机器阅读理解引起了广泛关注,但是在实际应用中输入的问题通常包含各种噪声和干扰,这些噪声和干扰会影响模型的预测结果。为了提高模型的泛化能力和鲁棒性,提出一种基于掩码校正的来自Transformer的双向编码器表示(Mac BERT)与对抗训练(AT)的机器阅读理解模型。首先利用Mac BERT对输入的问题和文本进行词嵌入转化为向量表示;然后根据原始样本反向传播的梯度变化在原始词向量上添加微小扰动生成对抗样本;最后将原始样本和对抗样本输入双向长短期记忆(Bi LSTM)网络进一步提取文本的上下文特征,输出预测答案。实验结果表明,该模型在简体中文数据集CMRC2018上的F1值和精准匹配(EM)值分别较基线模型提高了1.39和3.85个百分点,在繁体中文数据集DRCD上的F1值和EM值分别较基线模型提高了1.22和1.71个百分点,在英文数据集SQu ADv1.1上的F1值和EM值分别较基线模型提高了2.86和1.85个百分点,优于已有的大部分机器阅读理解模型,并且在真实问答结果上与基线模型进行对比,结果验证了该模型具有更强的鲁棒性和泛化能力,在输入的问题存在噪声的情况下性能更好。 展开更多
关键词 机器阅读理解 对抗训练 预训练模型 掩码校正的来自Transformer的双向编码器表示 双向长短期记忆网络
下载PDF
基于关系增强图卷积网络的机器阅读理解式事件检测
5
作者 纪婉婷 鲁闻一 +3 位作者 马宇航 丁琳琳 宋宝燕 张浩林 《计算机应用》 CSCD 北大核心 2024年第10期3288-3293,共6页
在面对具有复杂句法关系的长文本上下文时,现有机器阅读理解式事件检测模型难以挖掘关键词之间长距离依赖关系。针对上述问题,提出一种基于关系增强图卷积网络(REGCN)的机器阅读理解式事件检测模型(MRCREGCN)。首先,利用预训练语言模型... 在面对具有复杂句法关系的长文本上下文时,现有机器阅读理解式事件检测模型难以挖掘关键词之间长距离依赖关系。针对上述问题,提出一种基于关系增强图卷积网络(REGCN)的机器阅读理解式事件检测模型(MRCREGCN)。首先,利用预训练语言模型对问题和文本进行联合编码,得到融入先验信息的单词向量表示;其次,引入动态的关系增强标签信息,并利用REGCN深入学习单词之间的句法依存关系,增强模型对长文本句法结构的感知能力;最后,利用多分类器得到文本单词在所有事件类型下的概率分布。在ACE2005英文语料上的实验结果表明,所提模型在触发词分类上的F1分值相较于同类机器阅读理解模型EEQA(Event Extraction by Answering(almost)natural Questions)和最佳基线模型DEGREE(Data-Efficient GeneRation-based Event Extraction)分别提升了2.49%和1.23%,验证了MRC-REGCN具有更好的事件检测性能。 展开更多
关键词 机器阅读理解 事件检测 图卷积网络 句法依存关系 触发词分类
下载PDF
基于阅读技巧识别和双通道融合机制的机器阅读理解方法
6
作者 彭伟 胡玥 +2 位作者 李运鹏 谢玉强 牛晨旭 《自动化学报》 EI CAS CSCD 北大核心 2024年第5期958-969,共12页
机器阅读理解任务旨在要求系统对给定文章进行理解,然后对给定问题进行回答.先前的工作重点聚焦在问题和文章间的交互信息,忽略了对问题进行更加细粒度的分析(如问题所考察的阅读技巧是什么?).受先前研究的启发,人类对于问题的理解是一... 机器阅读理解任务旨在要求系统对给定文章进行理解,然后对给定问题进行回答.先前的工作重点聚焦在问题和文章间的交互信息,忽略了对问题进行更加细粒度的分析(如问题所考察的阅读技巧是什么?).受先前研究的启发,人类对于问题的理解是一个多维度的过程.首先,人类需要理解问题的上下文信息;然后,针对不同类型问题,识别其需要使用的阅读技巧;最后,通过与文章交互回答出问题答案.针对这些问题,提出一种基于阅读技巧识别和双通道融合的机器阅读理解方法,对问题进行更加细致的分析,从而提高模型回答问题的准确性.阅读技巧识别器通过对比学习的方法,能够显式地捕获阅读技巧的语义信息.双通道融合机制将问题与文章的交互信息和阅读技巧的语义信息进行深层次的融合,从而达到辅助系统理解问题和文章的目的.为了验证该模型的效果,在FairytaleQA数据集上进行实验,实验结果表明,该方法实现了在机器阅读理解任务和阅读技巧识别任务上的最好效果. 展开更多
关键词 机器阅读理解 阅读技巧识别 对比学习 双通道融合机制
下载PDF
一种多任务联合训练的机器阅读理解模型
7
作者 王勇 陈秋怡 +1 位作者 苗夺谦 杨宁创 《小型微型计算机系统》 CSCD 北大核心 2024年第6期1398-1404,共7页
在机器阅读理解任务中,如何在包含不可回答问题的情况下提高答案的准确性是自然语言处理领域的一项重要挑战.虽然基于深度学习的机器阅读理解模型展现出很好的性能,但是这些模型仍然存在抽取特征冗余、语义信息不全面、问题分类任务和... 在机器阅读理解任务中,如何在包含不可回答问题的情况下提高答案的准确性是自然语言处理领域的一项重要挑战.虽然基于深度学习的机器阅读理解模型展现出很好的性能,但是这些模型仍然存在抽取特征冗余、语义信息不全面、问题分类任务和答案抽取任务耦合性不强的问题.为了解决以上问题,本文提出一种结合门控机制和多级残差结构的多任务联合训练模型GMRT(Gated Mechanism and Multi-level Residual Structure for Multi-task Joint Training),以提升机器阅读理解任务中答案预测的准确性.GMRT构建门控机制来筛选交互后的关联特征,从而控制信息的流动.采用多级残差结构分别连接注意力机制和门控机制,保证每个阶段都保留原始语义信息.同时,通过边缘损失函数对问题分类任务和答案抽取任务联合训练,确保预测答案过程中任务之间的强耦合性.在SQuAD2.0数据集上的实验结果表明,GMRT模型的EM值和F1值均优于对比模型. 展开更多
关键词 机器阅读理解 多任务联合训练 门控机制 多级残差结构
下载PDF
基于话头话体共享结构信息的机器阅读理解研究
8
作者 韩玉蛟 罗智勇 +2 位作者 张明明 赵志琳 张青 《中文信息学报》 CSCD 北大核心 2024年第5期32-40,共9页
机器阅读理解(Machine Reading Comprehension,MRC)任务旨在让机器回答给定上下文的问题来测试机器理解自然语言的能力。目前,基于大规模预训练语言模型的神经机器阅读理解模型已经取得重要进展,但在涉及答案要素、线索要素和问题要素... 机器阅读理解(Machine Reading Comprehension,MRC)任务旨在让机器回答给定上下文的问题来测试机器理解自然语言的能力。目前,基于大规模预训练语言模型的神经机器阅读理解模型已经取得重要进展,但在涉及答案要素、线索要素和问题要素跨标点句、远距离关联时,答案抽取的准确率还有待提升。该文通过篇章内话头话体结构分析,建立标点句间远距离关联关系,补全共享缺失成分,辅助机器阅读理解答案抽取;设计和实现融合话头话体结构信息的机器阅读理解模型,在公开数据集CMRC2018上的实验结果表明,模型的F 1值相对于基线模型提升2.4%,EM值提升6%。 展开更多
关键词 机器阅读理解 话头话体结构分析 注意力机制 预训练语言模型
下载PDF
基于小句复合体的中文机器阅读理解研究
9
作者 王瑞琦 罗智勇 +2 位作者 刘祥 韩瑞昉 李舒馨 《中文信息学报》 CSCD 北大核心 2024年第3期130-140,共11页
机器阅读理解任务要求机器根据篇章文本回答相关问题。该文以抽取式机器阅读理解为例,重点考察当问题的线索要素与答案在篇章文本中跨越多个标点句时的阅读理解问题。该文将小句复合体结构自动分析任务与机器阅读理解任务融合,利用小句... 机器阅读理解任务要求机器根据篇章文本回答相关问题。该文以抽取式机器阅读理解为例,重点考察当问题的线索要素与答案在篇章文本中跨越多个标点句时的阅读理解问题。该文将小句复合体结构自动分析任务与机器阅读理解任务融合,利用小句复合体中跨标点句话头-话体共享关系,来降低机器阅读理解任务的难度;并设计与实现了基于小句复合体的机器阅读理解模型。实验结果表明,在问题线索要素与答案跨越多个标点句时,答案抽取的精确匹配率(EM)相对于基准模型提升了3.49%,模型整体的精确匹配率提升了3.26%。 展开更多
关键词 机器阅读理解 跨标点句问答 小句复合体
下载PDF
面向机器阅读理解的医学域数据集MedicalQA
10
作者 马宁 吕文蓉 郭泽晨 《中国科学数据(中英文网络版)》 CSCD 2024年第1期356-365,共10页
机器阅读理解旨在利用算法让计算机理解段落语义并回答用户提出的问题,该任务所用数据集的质量可直接影响模型的实验结果。为丰富机器阅读理解的医学领域数据集,本文以爬虫和人工标注的方式构建了面向机器阅读理解的医学域数据集Medica... 机器阅读理解旨在利用算法让计算机理解段落语义并回答用户提出的问题,该任务所用数据集的质量可直接影响模型的实验结果。为丰富机器阅读理解的医学领域数据集,本文以爬虫和人工标注的方式构建了面向机器阅读理解的医学域数据集MedicalQA。本数据集以寻医问药网和39健康网两大医疗平台为主要数据来源,包含19502个段落、问题和答案,内容涉及内科、外科、妇产科等9大科室。数据集形式为excel文件,由5列组成,第一列为段落ID,第二列为段落所属科室,第三列为段落内容,第四列为问题,第五列为问题对应答案。本数据集的构建,有利于机器阅读理解模型的鲁棒性研究以及医学问答系统的构建,也能促进机器阅读理解领域的医学数据集共享。 展开更多
关键词 机器阅读理解 医学域 数据集
下载PDF
基于多层次信息融合的多跳机器阅读理解
11
作者 朱海飞 段宗涛 +2 位作者 王全伟 曹建荣 席铁钧 《计算机系统应用》 2024年第7期239-247,共9页
以往机器阅读理解模型中存在文本特征提取单一,文本和问题的交互信息不全面等问题,导致模型不能充分对文本进行理解,本文提出了一种多层次信息融合的机器阅读理解模型.通过在不同位置使用不同方法,对文本信息进行多种层次的获取.使用膨... 以往机器阅读理解模型中存在文本特征提取单一,文本和问题的交互信息不全面等问题,导致模型不能充分对文本进行理解,本文提出了一种多层次信息融合的机器阅读理解模型.通过在不同位置使用不同方法,对文本信息进行多种层次的获取.使用膨胀卷积网络捕捉文本的全局信息,采用双向注意力机制和自注意力机制融合文本和问题之间的交互信息,通过指针网络预测答案及其对应的支撑句.该模型在CAIL2019和CAIL2020阅读理解数据集上训练的联合F1值分别达到50.09%和58.44%,相比于其他基线模型取得了明显的性能提升. 展开更多
关键词 多跳机器阅读理解 注意力机制 信息融合
下载PDF
基于机器阅读理解的行车故障诊断知识抽取
12
作者 郑佳明 沈颖 +2 位作者 刘晓强 涂文奇 李柏岩 《智能计算机与应用》 2024年第9期56-62,共7页
行车故障调查单是对行车故障诊断过程的文本记录,基于这些历史记录构建知识图谱可以更好地支持行车故障诊断智能化。由于该语料具有实体嵌套、实体跨度大、关系重叠等特点,传统的命名实体识别和关系抽取模型难以对其进行有效的知识抽取... 行车故障调查单是对行车故障诊断过程的文本记录,基于这些历史记录构建知识图谱可以更好地支持行车故障诊断智能化。由于该语料具有实体嵌套、实体跨度大、关系重叠等特点,传统的命名实体识别和关系抽取模型难以对其进行有效的知识抽取。针对语料中存在的实体嵌套和长实体识别问题,本文提出了一种融合强化学习的机器阅读理解模型,以问答形式进行实体识别,以指针网络进行解码;对于语料中存在的关系重叠问题,将关系抽取分为先识别主体再识别客体的两阶段,将不同实体对的关系抽取进行隔离。实验结果表明,基于机器阅读理解的方法在行车故障诊断领域的知识抽取上具有较好的性能,可以有效支持领域知识图谱构建。 展开更多
关键词 行车故障诊断 知识图谱 知识抽取 机器阅读理解 指针网络
下载PDF
藏医药抽取式机器阅读理解数据集研究
13
作者 旦增罗布 拉巴次仁 +1 位作者 王浩畅 小次仁 《西藏科技》 2024年第9期73-80,共8页
藏文机器阅读理解领域尚处于起步阶段,构建一份高质量的语料库成为推动该领域发展的当务之急。本研究采用众包方式,对藏医经典著作《四部医典》中的藏医植物药材与名词解释部分进行精细标注。结合藏文掩码数据扩充策略,有效扩充了数据... 藏文机器阅读理解领域尚处于起步阶段,构建一份高质量的语料库成为推动该领域发展的当务之急。本研究采用众包方式,对藏医经典著作《四部医典》中的藏医植物药材与名词解释部分进行精细标注。结合藏文掩码数据扩充策略,有效扩充了数据集的规模,最终整理出13k条有效问答对。基于该数据集,通过优化传统的注意力机制,提出了一个高效的藏文机器阅读理解模型。文章的研究不仅对于推动藏文信息处理技术的深入发展具有重要意义,更有助于提升机器对藏文文本的理解能力,从而为藏文化的传承和保护提供有力支持。 展开更多
关键词 藏文机器阅读理解 四部医典 藏文语料库 注意力机制
下载PDF
面向知识图谱的会话式机器阅读理解研究综述
14
作者 胡娟 奚雪峰 崔志明 《计算机工程与应用》 CSCD 北大核心 2024年第3期17-28,共12页
对话式机器阅读理解随着数据集的发展而发展,目的在于让机器在理解文章内容的基础上能够进行多轮对话。但现有的模型方法无法从对话历史中捕获到与当前问题最相关的历史信息,模型的推理能力较差,很难获取实体间的隐含信息。知识图谱应... 对话式机器阅读理解随着数据集的发展而发展,目的在于让机器在理解文章内容的基础上能够进行多轮对话。但现有的模型方法无法从对话历史中捕获到与当前问题最相关的历史信息,模型的推理能力较差,很难获取实体间的隐含信息。知识图谱应用于推理问答是当前的一大研究热点。知识图谱技术可以推断出实体间的隐含关系,应用于推理问答则能够提升模型的推理问答能力,提高预测的准确率。近年来,知识图谱推理技术的广泛应用,极大地推动了知识图谱推理问答的发展。对基于知识图谱的会话式机器阅读理解从三方面进行总结:介绍了会话式机器阅读理解领域的数据集以及当前的一些典型的模型方法,并对模型的性能和优缺点作了简要的分析与比较;介绍了知识图谱的定义、架构以及四大核心技术,并简要介绍了三大类知识图谱推理问答的模型方法;最后总结工作,并根据会话式机器阅读理解的数据集特点和知识图谱推理问答模型的缺点,对未来的研究重点进行展望。 展开更多
关键词 机器阅读理解 多轮对话 知识图谱 知识图谱推理问答
下载PDF
基于逻辑推理的机器阅读理解综述
15
作者 李晴 李艳玲 +2 位作者 董杰 葛凤培 林民 《计算机科学与探索》 CSCD 北大核心 2024年第8期1998-2013,共16页
机器阅读理解是自然语言处理领域中的核心任务之一,该任务目标是使机器能够理解自然语言文本,并正确回答关于文本内容的问题。随着自然语言处理相关方法和模型的发展,研究者们开始关注机器阅读理解中更具挑战性的推理型问题,这些问题通... 机器阅读理解是自然语言处理领域中的核心任务之一,该任务目标是使机器能够理解自然语言文本,并正确回答关于文本内容的问题。随着自然语言处理相关方法和模型的发展,研究者们开始关注机器阅读理解中更具挑战性的推理型问题,这些问题通常要求模型不仅理解文本中的浅层信息,还要能够在逻辑上进行思考和推理,以回答更加复杂的问题。对基于逻辑推理的机器阅读理解相关的最新成果进行全面的归纳。介绍基于逻辑推理的机器阅读理解任务。介绍该任务的相关方法,并根据侧重点的不同将这些方法分成四类:基于符号神经网络的方法、基于图神经网络的方法、基于预训练的方法和基于大模型的微调策略。重点描述四类方法的代表性工作。在LogiQA和ReClor两个逻辑推理主流数据集上探讨方法的优缺点,并总结基于逻辑推理的机器阅读理解任务的未来研究方向。 展开更多
关键词 机器阅读理解 逻辑推理 智能问答
下载PDF
基于机器阅读理解的论文辅助阅读系统构建
16
作者 秘蓉新 姚文文 阮宏坤 《大数据》 2024年第4期121-129,共9页
在信息化和数字化时代,科技论文数量的迅速增加带来了一系列问题,如论文冗长、信息提取困难、阅读时间成本居高不下等,研究者面临着更加烦琐、耗时的文献阅读挑战。通过语言模型落地创新,设计了科技论文辅助阅读系统来应对这些挑战。以... 在信息化和数字化时代,科技论文数量的迅速增加带来了一系列问题,如论文冗长、信息提取困难、阅读时间成本居高不下等,研究者面临着更加烦琐、耗时的文献阅读挑战。通过语言模型落地创新,设计了科技论文辅助阅读系统来应对这些挑战。以机器阅读理解技术为核心,通过解析论文文本和预先设定问题,达到自动回答的效果。充分利用预训练语言模型PERT,提升系统对语义的理解和信息的提取能力,解决科技论文阅读过程中存在的各种问题,从而帮助读者提高科技文献阅读效率。 展开更多
关键词 自然语言处理 机器阅读理解 预训练语言模型
下载PDF
一种面向机器阅读理解系统的问题意图识别方法
17
作者 卢心陶 戚晓伟 《河北软件职业技术学院学报》 2024年第3期25-30,共6页
随着深度学习不断发展,基于问答系统的机器阅读理解能力不断提高并达到了较高水平,但当用户提出模棱两可的问题,机器阅读理解模型在回答时仍存在偏差。为优化模型,提出了一种创新方法,即候选修正问题生成(CRQG)。CRQG专门进行输入问题... 随着深度学习不断发展,基于问答系统的机器阅读理解能力不断提高并达到了较高水平,但当用户提出模棱两可的问题,机器阅读理解模型在回答时仍存在偏差。为优化模型,提出了一种创新方法,即候选修正问题生成(CRQG)。CRQG专门进行输入问题的修正,并生成多个最优问题候选集,便于用户在候选集中选择最接近其表达意图的问题,从而在阅读理解中获得较高精准度的答案。为实现该方法,同时设计了一个轻量级候选问题生成模型(LCQGM),该模型融入问题与段落两种复制机制,用于描述在段落中损失的用户输入问题信息。实验结果表明,该模型有效地提升了机器阅读理解的精确性。 展开更多
关键词 机器阅读理解 问答系统 编码器-解码器 GRU
下载PDF
机器阅读理解研究与进展
18
作者 王浩畅 闫凯峰 Marius Gabriel Petrescu 《计算机应用与软件》 北大核心 2023年第3期1-10,71,共11页
针对目前机器阅读理解的研究进展,对机器阅读理解的研究背景和国内外研究现状进行详细介绍,着重介绍国内外主流的大规模机器阅读理解数据集,以及在各个数据集上的评价指标。介绍神经机器阅读理解模型,并对向量化、编码、注意力机制、答... 针对目前机器阅读理解的研究进展,对机器阅读理解的研究背景和国内外研究现状进行详细介绍,着重介绍国内外主流的大规模机器阅读理解数据集,以及在各个数据集上的评价指标。介绍神经机器阅读理解模型,并对向量化、编码、注意力机制、答案预测模块做了详细的介绍。总结当前机器阅读理解所面临的问题,并展望未来的发展趋势。 展开更多
关键词 自然语言处理 机器阅读理解 深度神经网络 机器阅读理解数据集 注意力机制
下载PDF
长短答案分类指导的机器阅读理解方法
19
作者 杨建喜 向芳悦 +4 位作者 李韧 李东 蒋仕新 张露伊 肖桥 《中文信息学报》 CSCD 北大核心 2023年第5期112-121,共10页
针对现有机器阅读理解模型存在长答案不完整、短答案冗余,即模型对答案的边界信息捕捉能力有待提升问题,该文基于“问题分类+答案预测联合学习”的流水线式策略,提出了一种通过答案长短特征分类指导机器阅读理解的神经网络模型。该方法... 针对现有机器阅读理解模型存在长答案不完整、短答案冗余,即模型对答案的边界信息捕捉能力有待提升问题,该文基于“问题分类+答案预测联合学习”的流水线式策略,提出了一种通过答案长短特征分类指导机器阅读理解的神经网络模型。该方法采用预训练语言模型对问题和文章进行语义表示,并以待预测答案的长短类型对相应问题进行分类,然后将问题分类的结果用于指导阅读理解中的答案预测模块,最终以多任务学习的方式得到全部答案的开始位置和结束位置。实验结果表明,该模型在CMRC2018数据集上的EM平均值为67.4%,F1平均值为87.6%,相比基线模型,分别提升了0.9%和1.1%。在自建的中文桥梁检测问答数据集上的EM平均值为89.4%、F1平均值为94.7%,相比基线模型,分别提升了1.2%和0.5%。在更少训练集规模的CMRC2018和中文繁体数据集DRCD上,该文方法也优于基线模型。 展开更多
关键词 机器阅读理解 RoBERTa_wwm_ext 文本分类 多任务学习
下载PDF
基于BERT_Att的机器阅读理解模型
20
作者 王红 邸帅 吴燕婷 《计算机应用与软件》 北大核心 2023年第3期223-228,共6页
针对当前机器阅读理解模型中文本与问题的语义融合不够充分、缺乏考虑全局的语义信息的问题,提出一种基于BERT、注意力机制与自注意力机制的机器阅读理解模型BERT_Att。该模型采用BERT将文本和问题分别映射进特征空间,通过Bi-LSTM、注... 针对当前机器阅读理解模型中文本与问题的语义融合不够充分、缺乏考虑全局的语义信息的问题,提出一种基于BERT、注意力机制与自注意力机制的机器阅读理解模型BERT_Att。该模型采用BERT将文本和问题分别映射进特征空间,通过Bi-LSTM、注意力机制与自注意力机制将文本与问题进行充分的语义融合,通过Softmax计算答案的概率分布。在公共数据集DuReader上的实验结果表明,该模型的BLEU-4值与ROUGE-L值较现有的模型均有进一步的提升,并且分析了影响模型表现的因素,验证了该模型设计的有效性。 展开更多
关键词 机器阅读理解 BERT 自注意力机制 Bi-LSTM 语义融合
下载PDF
上一页 1 2 9 下一页 到第
使用帮助 返回顶部