This paper briefs the configuration and performance of large size gas turbines and their composed combined cycle power plants designed and produced by four large renown gas turbine manufacturing firms in the world, pr...This paper briefs the configuration and performance of large size gas turbines and their composed combined cycle power plants designed and produced by four large renown gas turbine manufacturing firms in the world, providing reference for the relevant sectors and enterprises in importing advanced gas turbines and technologies.展开更多
According to a research on the 30kVA simulation experimental platform of hydraulic wind tur- bine, its basic structure, composition and operation principle are expounded in this paper. An in- verter motor is used to s...According to a research on the 30kVA simulation experimental platform of hydraulic wind tur- bine, its basic structure, composition and operation principle are expounded in this paper. An in- verter motor is used to simulate the wind turbine, while a similarity calculation method is applied be- tween the small and large wind turbine. A fixed displacement pump-variable motor closed loop is used as the main transmission system, and a self-excited synchronous generator generates electricity through the grid connection. The experiment and simulation study on the speed and power control of the hydraulic wind turbine is conducted, based on the experimental platform, thus correctness and progressiveness of the experiment platform is further verified. The experimental platform study lays a foundation for further research on the characteristics of hydraulic wind turhln~展开更多
The development of offshore wind energy is fast as it is clean, safe and of high efficiency. The harsh marine environment raises high demand on the foundation design of offshore wind turbine. Earthquake loading is one...The development of offshore wind energy is fast as it is clean, safe and of high efficiency. The harsh marine environment raises high demand on the foundation design of offshore wind turbine. Earthquake loading is one of the most significant factors which should be considered in the design phase. In this paper, a group of earthquake centrifuge tests were conducted on a physical wind turbine model with tripod foundation. The seismic responses of both wind turbine model and foundation soil were analyzed in terms of the recorded accelerations, pore water pressures, lateral displacements and settlements. The results were also compared with those measured in the previous research on mono-pile foundation. It is demonstrated that the tripod foundation can provide better resistance in the lateral displacement and structural settlement under earthquake loading.展开更多
Japan's first open sea offshore wind farm, Kamisu offshore windfarm Phase l, was stricken by an earthquake of intensity 6 on the Japanese seismic scale and a five-meter-high tsunami during the Great East Japan Earthq...Japan's first open sea offshore wind farm, Kamisu offshore windfarm Phase l, was stricken by an earthquake of intensity 6 on the Japanese seismic scale and a five-meter-high tsunami during the Great East Japan Earthquake on March 11,2011. The wind farm resumed operation on March 14 after checks revealed no damage to the system, even though the wind farm was temporarily forced to stop due to the grid failure caused by the earthquake. Wind turbines require a precise seismic design especially in an earthquake-prone country such as Japan. Wind power Kamisu Phase 2 was built one year after the earthquake based on the experience of Kamisu Phase 1. This paper presents the seismic design of offshore wind turbines and the situation during the earthquake and tsunami.展开更多
The main technical problems that should be considered in the design of hydro-turbine generating units of Three Gorges Project (TGP) are analyzed;the key technical researches performed are summarized,and the parameters...The main technical problems that should be considered in the design of hydro-turbine generating units of Three Gorges Project (TGP) are analyzed;the key technical researches performed are summarized,and the parameters of hydro-turbine generating units are optimized through the study on key technical problems.The unit operation indicates that the performance of the hydro-turbine generating units is excellent,and the units can operate in a safe,stable and highly efficient mode for a long term.Therefore,it is verified effectively that the general technical design of units is scientific and rational.展开更多
The control of ultra-supercritical(USC) power unit is a difficult issue for its characteristic of the nonlinearity, large dead time and coupling of the unit. In this paper, model predictive control(MPC) based on multi...The control of ultra-supercritical(USC) power unit is a difficult issue for its characteristic of the nonlinearity, large dead time and coupling of the unit. In this paper, model predictive control(MPC) based on multi-model and double layered optimization is introduced for coordinated control of USC unit. The linear programming(LP) combined with quadratic programming(QP) is used in steady optimization for computation of the ideal value of dynamic optimization. Three inputs(i.e. valve opening, coal flow and feedwater flow) are employed to control three outputs(i.e. load, main steam temperature and main steam pressure). The step response models for the dynamic matrix control(DMC) are constructed using the three inputs and the three outputs. Piecewise models are built at selected operation points. Double-layered multi-model predictive controller is implemented in simulation with satisfactory performance.展开更多
The counter-rotating type hydroelectric unit, which is composed of the axial flow type tandem runners and the peculiar generator with double rotational armatures, has been proposed. In the unit, the front and the rear...The counter-rotating type hydroelectric unit, which is composed of the axial flow type tandem runners and the peculiar generator with double rotational armatures, has been proposed. In the unit, the front and the rear runners counter-drive the inner and the outer armatures of the generator, respectively. Besides, the flow direction at the rear runner outlet must coincide with the direction at the front runner inlet, because the angular momentum change through the rear runner must coincides with that through the front runner. In this paper, the tandem runners work at on-cam conditions in keeping the induced frequency constant, to provide the hydroelectric unit for the power grid system. The output and the hydraulic efficiency are affected by the adjusting angles of the front and the rear blades. Both optimum angles giving the maximum output or efficiency were presented at the various discharge/head circumstances, accompanying with the turbine performances.展开更多
This paper analyzes a DFIG (doubly fed induction generator) WT (wind turbine) fault current after a symmetrical network voltage dip. The goal is to identify the factors determining how fast the first zero crossing...This paper analyzes a DFIG (doubly fed induction generator) WT (wind turbine) fault current after a symmetrical network voltage dip. The goal is to identify the factors determining how fast the first zero crossings of the fault current occur. This is an important subject because the ftmdamental property of the CB (circuit breaker) is that it breaks the current when the current is very near zero. The study was conducted using a hardware-in-the-loop test environment constructed using two real time simulators (dSPACE and RTDS) and a commercial protection relay. It is found that the reactive current injection during a voltage dip demanded by the grid codes enhances the operation of the WT protection because the zero crossings of the currents through CB are attained earlier. In addition, the size of the crowbar resistance has a significant influence on the zero crossings.展开更多
The luminous efficiency of organic light-emitting devices depends on the recombination probability of electrons injected at the cathode and holes at the anode. A theoretical model to calculate the distribution of curr...The luminous efficiency of organic light-emitting devices depends on the recombination probability of electrons injected at the cathode and holes at the anode. A theoretical model to calculate the distribution of current densities and the recombination rate in organic single layer devices is presented taking into account the charge injection process at each electrode, charge transport and recombination in organic layer. The calculated results indicate that efficient single-layer devices are possible by adjusting the barrier heights at two electrodes and the carrier mobilities. Lowering the barrier heights can improve the electroluminescent(EL) efficiency pronouncedly in many cases, and efficient devices are still possible using an ohmic contact to inject the low mobility carrier, and a contact limited contact to inject the high mobility carrier. All in all, high EL efficiency needs to consider sufficient recombination, enough injected carriers and well transport.展开更多
A novel MEMS device boning system is presented. Aiming at the high velocity, high precision and high flexibility requirements, a novel manipulator of planar parallel structure is developed to substitute ordinary X-Y t...A novel MEMS device boning system is presented. Aiming at the high velocity, high precision and high flexibility requirements, a novel manipulator of planar parallel structure is developed to substitute ordinary X-Y table. In addition, the machine vision is implemented to improve the system' s flexibility. The initial angular positions of the joints are estimated by the extended Kalman filter algorithm. As a resuh, the manipulator's absolute locating accuracy in its workspace is guaranteed indirectly. For any MEMS device, the bonding system itself can be used as measurement equipment to create the device' s geometry model, which is the base to do off-line programming. A quite ideal trade-off between the system' s flexibility and efficiency is got. Finally, some verified motion specification of the manipulator, the bonding experimental results and the verified qualities of the bonded devices are provided.展开更多
Permanent magnet synchronous Generator (PMSG) based direct-drive wind energy conversion system (WECS) has been attracting wide attentions. For the special application, sensorless control for PMSG is desired. By wi...Permanent magnet synchronous Generator (PMSG) based direct-drive wind energy conversion system (WECS) has been attracting wide attentions. For the special application, sensorless control for PMSG is desired. By widely studying the previous contributes, a novel estimator based on back-EMF is proposed. The estimator is composed of back-EMF observer and a phase-lock-loop (PLL) control to get the rotor-flux speed and position. The estimator not only can be used for interior and surface permanent magnet synchronous generators, but also has a compact and symmetrical structure, which makes it be beneficial for implementation. Compared with previous strategies, the EMF observer is independent of the PLL control, which would simplify the observer design. Meanwhile, the proposed estimator is less sensitive to parameter variations. Based on mathematic models of PMSG, the proposed estimator was analyzed in detail, and the realizing process was also presented. To validate the proposed estimator, the important experiment results are reported.展开更多
In the small country of Ecuador, all environmental risks of the production and consumption of fossil fuels can be observed by damages through oil exploration in the amazonite rainforest and two tank ship accidents clo...In the small country of Ecuador, all environmental risks of the production and consumption of fossil fuels can be observed by damages through oil exploration in the amazonite rainforest and two tank ship accidents close by Galapagos Islands causing death of 10,000 marine iguanas and other species. Now Ecuador plans to replace all environmentally dangerous diesel generators from all four inhabited Galapagos Islands by a hybrid system using 100% renewable energy for electricity production. Since 2010 a hybrid system of two Jatropha oil generators with an electrical power of 69 kW (kWel) and a photovoltaic plant with an electrical peak power of 21 kW (kWpeak) is successfully providing electricity from renewable energy for inhabitants and tourists of Floreana Island. After more than 15.000 engine operation hours of each engine there is no engine defect. For fuel supply, the so-called "Living Fence" concept collecting Jatropha seeds by farmers and families from already existing 6,000 km hedges on Ecuadorian mainland was chosen to comply with highest biofuel sustainability standards. The Jatropha oil is produced in a decentralized so-called CompacTropha oil mill container following the ambitious German fuel quality standard DIN51605. Since 2010 Floreana project successfully demonstrates that it is possible to replace diesel gen sets by generators fueled with pure Jatropha oil from decentralized sustainable production.展开更多
In this paper the development status and background of 350-MW China-made supercritical steam turbines are introduced.Through the study on the eight turbines that are put into operation,their technical performances are...In this paper the development status and background of 350-MW China-made supercritical steam turbines are introduced.Through the study on the eight turbines that are put into operation,their technical performances are compared and summarized.The major factors affecting the heat consumption rate are analyzed in details and the technical measures to reduce the heat consumption rate are put forward.These measures have been applied to several such units with significant improvements,which can provide important references for the maintenance and retrofit of 350-MW super critical steam turbines.展开更多
Selection of the wind turbine manufacturer is naturally an important issue for wind energy companies when they build new wind farms. This paper describes the main factors by which wind energy companies choose their tu...Selection of the wind turbine manufacturer is naturally an important issue for wind energy companies when they build new wind farms. This paper describes the main factors by which wind energy companies choose their turbine manufacturers in a selected case region in Finland. The study was conducted using semi-structured interviews, for which the experts and decision makers of selected wind energy companies formed the focus group. During the analysis of the results, it became clear that it was not possible to form a detailed and prioritized list of selection criteria, but still some general themes emerged. The main theme was the manufacturer and product reliability, and then the production volume, cost factors, availability factors, and the organization of maintenance in this order. Interestingly, the arctic conditions of the selected case region did not play any significant role.展开更多
With the growing energetic need present in the world, it is increasingly necessary for the researches and facilities to seek a better use of renewable natural resources. This paper is applied in the study of the perfo...With the growing energetic need present in the world, it is increasingly necessary for the researches and facilities to seek a better use of renewable natural resources. This paper is applied in the study of the performance of the aeration system of the Francis turbines present in Itaipu Hydroelectric Power Plant. When a Francis turbine operates off its optimal conditions, a vortex is formed inside the draft tube that, besides produces cavitation and pressure fluctuations, can pulse at frequencies with risk of resonance with hydraulic system, producing efforts and vibrations that may cause structural failures in the turbines, generators and civil parts of the power house. These damaging effects can be reduced using atmospheric aeration of the turbines. Because of this, the availability and effectively of the aeration system is fundamental to smooth the behavior of the turbines, helping preserve the health of the power plant. An analysis of the performance of the aeration system will be done using maintenance records and disturbances analysis reports (RAP), allowing verification of the operating conditions of the turbine and fatality of water inlet in air pipes. Through the improvements detected, it is possible to reduce machine stoppages by tripping, thus increasing the availability of the turbines.展开更多
Increasing size of wind turbine and deep water deployment have raised the issue of appropriate selection of the most suitable support structure to make offshore wind energy cost competitive.The paper presents an optim...Increasing size of wind turbine and deep water deployment have raised the issue of appropriate selection of the most suitable support structure to make offshore wind energy cost competitive.The paper presents an optimization methodology for decision making process of bottom mounted supports of offshore wind turbines (OWTs) through reasonable engineering attributes derivation.Mathematic models of support structures are reduced by the generalized single-degree-of-freedom theory with relatively fewer structural parameters.Soft-stiff design optimization based on dynamic properties of OWTs is performed for monopile and lattice supports with different wind turbines,water depth and hub height.Attributes of support structures,wind turbines and environment conditions are applied in the multi-criteria decision making method——TOPSIS for benchmarking of those options.The results illustrate the effectiveness of the proposed optimazation methodology combined with economical and environmental attributes together.展开更多
文摘This paper briefs the configuration and performance of large size gas turbines and their composed combined cycle power plants designed and produced by four large renown gas turbine manufacturing firms in the world, providing reference for the relevant sectors and enterprises in importing advanced gas turbines and technologies.
基金Supported by the National Key Basic Research Development Program of China(No.2014CB046405)the National Natural Science Foundation of China(No.51475406,51405423)the Hebei Youth Fund(No.QN20132017)
文摘According to a research on the 30kVA simulation experimental platform of hydraulic wind tur- bine, its basic structure, composition and operation principle are expounded in this paper. An in- verter motor is used to simulate the wind turbine, while a similarity calculation method is applied be- tween the small and large wind turbine. A fixed displacement pump-variable motor closed loop is used as the main transmission system, and a self-excited synchronous generator generates electricity through the grid connection. The experiment and simulation study on the speed and power control of the hydraulic wind turbine is conducted, based on the experimental platform, thus correctness and progressiveness of the experiment platform is further verified. The experimental platform study lays a foundation for further research on the characteristics of hydraulic wind turhln~
文摘The development of offshore wind energy is fast as it is clean, safe and of high efficiency. The harsh marine environment raises high demand on the foundation design of offshore wind turbine. Earthquake loading is one of the most significant factors which should be considered in the design phase. In this paper, a group of earthquake centrifuge tests were conducted on a physical wind turbine model with tripod foundation. The seismic responses of both wind turbine model and foundation soil were analyzed in terms of the recorded accelerations, pore water pressures, lateral displacements and settlements. The results were also compared with those measured in the previous research on mono-pile foundation. It is demonstrated that the tripod foundation can provide better resistance in the lateral displacement and structural settlement under earthquake loading.
文摘Japan's first open sea offshore wind farm, Kamisu offshore windfarm Phase l, was stricken by an earthquake of intensity 6 on the Japanese seismic scale and a five-meter-high tsunami during the Great East Japan Earthquake on March 11,2011. The wind farm resumed operation on March 14 after checks revealed no damage to the system, even though the wind farm was temporarily forced to stop due to the grid failure caused by the earthquake. Wind turbines require a precise seismic design especially in an earthquake-prone country such as Japan. Wind power Kamisu Phase 2 was built one year after the earthquake based on the experience of Kamisu Phase 1. This paper presents the seismic design of offshore wind turbines and the situation during the earthquake and tsunami.
文摘The main technical problems that should be considered in the design of hydro-turbine generating units of Three Gorges Project (TGP) are analyzed;the key technical researches performed are summarized,and the parameters of hydro-turbine generating units are optimized through the study on key technical problems.The unit operation indicates that the performance of the hydro-turbine generating units is excellent,and the units can operate in a safe,stable and highly efficient mode for a long term.Therefore,it is verified effectively that the general technical design of units is scientific and rational.
基金Supported by the National Natural Science Foundation of China(60974119)
文摘The control of ultra-supercritical(USC) power unit is a difficult issue for its characteristic of the nonlinearity, large dead time and coupling of the unit. In this paper, model predictive control(MPC) based on multi-model and double layered optimization is introduced for coordinated control of USC unit. The linear programming(LP) combined with quadratic programming(QP) is used in steady optimization for computation of the ideal value of dynamic optimization. Three inputs(i.e. valve opening, coal flow and feedwater flow) are employed to control three outputs(i.e. load, main steam temperature and main steam pressure). The step response models for the dynamic matrix control(DMC) are constructed using the three inputs and the three outputs. Piecewise models are built at selected operation points. Double-layered multi-model predictive controller is implemented in simulation with satisfactory performance.
文摘The counter-rotating type hydroelectric unit, which is composed of the axial flow type tandem runners and the peculiar generator with double rotational armatures, has been proposed. In the unit, the front and the rear runners counter-drive the inner and the outer armatures of the generator, respectively. Besides, the flow direction at the rear runner outlet must coincide with the direction at the front runner inlet, because the angular momentum change through the rear runner must coincides with that through the front runner. In this paper, the tandem runners work at on-cam conditions in keeping the induced frequency constant, to provide the hydroelectric unit for the power grid system. The output and the hydraulic efficiency are affected by the adjusting angles of the front and the rear blades. Both optimum angles giving the maximum output or efficiency were presented at the various discharge/head circumstances, accompanying with the turbine performances.
文摘This paper analyzes a DFIG (doubly fed induction generator) WT (wind turbine) fault current after a symmetrical network voltage dip. The goal is to identify the factors determining how fast the first zero crossings of the fault current occur. This is an important subject because the ftmdamental property of the CB (circuit breaker) is that it breaks the current when the current is very near zero. The study was conducted using a hardware-in-the-loop test environment constructed using two real time simulators (dSPACE and RTDS) and a commercial protection relay. It is found that the reactive current injection during a voltage dip demanded by the grid codes enhances the operation of the WT protection because the zero crossings of the currents through CB are attained earlier. In addition, the size of the crowbar resistance has a significant influence on the zero crossings.
基金Excellent Youth Foundation of Hunan Province(03JJY1008) Science Foundation for Post-doctorate of China(2004035083) Science Foundation of Central South University( 0601059)
文摘The luminous efficiency of organic light-emitting devices depends on the recombination probability of electrons injected at the cathode and holes at the anode. A theoretical model to calculate the distribution of current densities and the recombination rate in organic single layer devices is presented taking into account the charge injection process at each electrode, charge transport and recombination in organic layer. The calculated results indicate that efficient single-layer devices are possible by adjusting the barrier heights at two electrodes and the carrier mobilities. Lowering the barrier heights can improve the electroluminescent(EL) efficiency pronouncedly in many cases, and efficient devices are still possible using an ohmic contact to inject the low mobility carrier, and a contact limited contact to inject the high mobility carrier. All in all, high EL efficiency needs to consider sufficient recombination, enough injected carriers and well transport.
基金Supported by the High Technology Research and Development Programme of China (No. 2003AA404060) and the National Natural Science Foundation of China (No.60405008).
文摘A novel MEMS device boning system is presented. Aiming at the high velocity, high precision and high flexibility requirements, a novel manipulator of planar parallel structure is developed to substitute ordinary X-Y table. In addition, the machine vision is implemented to improve the system' s flexibility. The initial angular positions of the joints are estimated by the extended Kalman filter algorithm. As a resuh, the manipulator's absolute locating accuracy in its workspace is guaranteed indirectly. For any MEMS device, the bonding system itself can be used as measurement equipment to create the device' s geometry model, which is the base to do off-line programming. A quite ideal trade-off between the system' s flexibility and efficiency is got. Finally, some verified motion specification of the manipulator, the bonding experimental results and the verified qualities of the bonded devices are provided.
文摘Permanent magnet synchronous Generator (PMSG) based direct-drive wind energy conversion system (WECS) has been attracting wide attentions. For the special application, sensorless control for PMSG is desired. By widely studying the previous contributes, a novel estimator based on back-EMF is proposed. The estimator is composed of back-EMF observer and a phase-lock-loop (PLL) control to get the rotor-flux speed and position. The estimator not only can be used for interior and surface permanent magnet synchronous generators, but also has a compact and symmetrical structure, which makes it be beneficial for implementation. Compared with previous strategies, the EMF observer is independent of the PLL control, which would simplify the observer design. Meanwhile, the proposed estimator is less sensitive to parameter variations. Based on mathematic models of PMSG, the proposed estimator was analyzed in detail, and the realizing process was also presented. To validate the proposed estimator, the important experiment results are reported.
文摘In the small country of Ecuador, all environmental risks of the production and consumption of fossil fuels can be observed by damages through oil exploration in the amazonite rainforest and two tank ship accidents close by Galapagos Islands causing death of 10,000 marine iguanas and other species. Now Ecuador plans to replace all environmentally dangerous diesel generators from all four inhabited Galapagos Islands by a hybrid system using 100% renewable energy for electricity production. Since 2010 a hybrid system of two Jatropha oil generators with an electrical power of 69 kW (kWel) and a photovoltaic plant with an electrical peak power of 21 kW (kWpeak) is successfully providing electricity from renewable energy for inhabitants and tourists of Floreana Island. After more than 15.000 engine operation hours of each engine there is no engine defect. For fuel supply, the so-called "Living Fence" concept collecting Jatropha seeds by farmers and families from already existing 6,000 km hedges on Ecuadorian mainland was chosen to comply with highest biofuel sustainability standards. The Jatropha oil is produced in a decentralized so-called CompacTropha oil mill container following the ambitious German fuel quality standard DIN51605. Since 2010 Floreana project successfully demonstrates that it is possible to replace diesel gen sets by generators fueled with pure Jatropha oil from decentralized sustainable production.
文摘In this paper the development status and background of 350-MW China-made supercritical steam turbines are introduced.Through the study on the eight turbines that are put into operation,their technical performances are compared and summarized.The major factors affecting the heat consumption rate are analyzed in details and the technical measures to reduce the heat consumption rate are put forward.These measures have been applied to several such units with significant improvements,which can provide important references for the maintenance and retrofit of 350-MW super critical steam turbines.
文摘Selection of the wind turbine manufacturer is naturally an important issue for wind energy companies when they build new wind farms. This paper describes the main factors by which wind energy companies choose their turbine manufacturers in a selected case region in Finland. The study was conducted using semi-structured interviews, for which the experts and decision makers of selected wind energy companies formed the focus group. During the analysis of the results, it became clear that it was not possible to form a detailed and prioritized list of selection criteria, but still some general themes emerged. The main theme was the manufacturer and product reliability, and then the production volume, cost factors, availability factors, and the organization of maintenance in this order. Interestingly, the arctic conditions of the selected case region did not play any significant role.
文摘With the growing energetic need present in the world, it is increasingly necessary for the researches and facilities to seek a better use of renewable natural resources. This paper is applied in the study of the performance of the aeration system of the Francis turbines present in Itaipu Hydroelectric Power Plant. When a Francis turbine operates off its optimal conditions, a vortex is formed inside the draft tube that, besides produces cavitation and pressure fluctuations, can pulse at frequencies with risk of resonance with hydraulic system, producing efforts and vibrations that may cause structural failures in the turbines, generators and civil parts of the power house. These damaging effects can be reduced using atmospheric aeration of the turbines. Because of this, the availability and effectively of the aeration system is fundamental to smooth the behavior of the turbines, helping preserve the health of the power plant. An analysis of the performance of the aeration system will be done using maintenance records and disturbances analysis reports (RAP), allowing verification of the operating conditions of the turbine and fatality of water inlet in air pipes. Through the improvements detected, it is possible to reduce machine stoppages by tripping, thus increasing the availability of the turbines.
基金Supported by the National Natural Science Foundation of China (No.51309209,51279186) and the National Basic Research Program of China (No.2011CB013704).
文摘Increasing size of wind turbine and deep water deployment have raised the issue of appropriate selection of the most suitable support structure to make offshore wind energy cost competitive.The paper presents an optimization methodology for decision making process of bottom mounted supports of offshore wind turbines (OWTs) through reasonable engineering attributes derivation.Mathematic models of support structures are reduced by the generalized single-degree-of-freedom theory with relatively fewer structural parameters.Soft-stiff design optimization based on dynamic properties of OWTs is performed for monopile and lattice supports with different wind turbines,water depth and hub height.Attributes of support structures,wind turbines and environment conditions are applied in the multi-criteria decision making method——TOPSIS for benchmarking of those options.The results illustrate the effectiveness of the proposed optimazation methodology combined with economical and environmental attributes together.