In this paper,a nonconforming rectangular plate element,the modified incomplete biquadratic plate element,is considered. The asympotic optimal L~∞-error estimate is obtained for the plate bending problem. This proof ...In this paper,a nonconforming rectangular plate element,the modified incomplete biquadratic plate element,is considered. The asympotic optimal L~∞-error estimate is obtained for the plate bending problem. This proof is based on the method of regularized Green's function and 'the trick of auxiliary element'.展开更多
Multivariate recurrent event data arises when study subjects may experience more than one type of recurrent events. In some situations, however, although event times are always observed, event categories may be partia...Multivariate recurrent event data arises when study subjects may experience more than one type of recurrent events. In some situations, however, although event times are always observed, event categories may be partially missing. In this paper, an additive-multiplicative rates model is proposed for the analysis of multivariate recurrent event data when event categories are missing at random. A weighted estimating equations approach is developed for parameter estimation, and the resulting estimators are shown to be consistent and asymptotically normal. In addition, a model-checking technique is presented to assess the adequacy of the model. Simulation studies are conducted to evaluate the finite sample behavior of the proposed estimators, and an application to a platelet transfusion reaction study is provided.展开更多
In this paper, by sharp function estimates and certain weak type endpoint estimates, the authors establish some weighted norm inequalities with Ap weights for the multilinear singular integral operators with non-smoot...In this paper, by sharp function estimates and certain weak type endpoint estimates, the authors establish some weighted norm inequalities with Ap weights for the multilinear singular integral operators with non-smooth kernels.展开更多
Multilinear commutators and iterated commutators of multilinear fractional integral operators with BMO functions are studied. Both strong type and weak type endpoint weighted estimates involving the multiple weights f...Multilinear commutators and iterated commutators of multilinear fractional integral operators with BMO functions are studied. Both strong type and weak type endpoint weighted estimates involving the multiple weights for such operators are established and the weak type endpoint results are sharp in some senses. In particular, we extend the results given by Cruz-Uribe and Fiorenza in 2003 and 2007 to the multilinear setting. Moreover, we modify the weak type of endpoint weighted estimates and improve the strong type of weighted norm inequalities on the multilinear commutators given by Chen and Xue in 2010 and 2011.展开更多
The choice of weights in frequentist model average estimators is an important but difficult problem. Liang et al. (2011) suggested a criterion for the choice of weight under a general parametric framework which is ter...The choice of weights in frequentist model average estimators is an important but difficult problem. Liang et al. (2011) suggested a criterion for the choice of weight under a general parametric framework which is termed as the generalized OPT (GOPT) criterion in the present paper. However, no properties and applications of the criterion have been studied. This paper is devoted to the further investigation of the GOPT criterion. We show that how to use this criterion for comparison of some existing weights such as the smoothed AIC-based and BIC-based weights and for the choice between model averaging and model selection. Its connection to the Mallows and ordinary OPT criteria is built. The asymptotic optimality on the criterion in the case of non-random weights is also obtained. Finite sample performance of the GOPT criterion is assessed by simulations. Application to the analysis of two real data sets is presented as well.展开更多
This paper proposes a new weighted quantile regression model for longitudinal data with weights chosen by empirical likelihood(EL). This approach efficiently incorporates the information from the conditional quantile ...This paper proposes a new weighted quantile regression model for longitudinal data with weights chosen by empirical likelihood(EL). This approach efficiently incorporates the information from the conditional quantile restrictions to account for within-subject correlations. The resulted estimate is computationally simple and has good performance under modest or high within-subject correlation. The efficiency gain is quantified theoretically and illustrated via simulation and a real data application.展开更多
This paper considers two estimators of θ= g(x) in a nonparametric regression model Y = g(x) + ε(x∈ (0, 1)p) with missing responses: Imputation and inverse probability weighted esti- mators. Asymptotic nor...This paper considers two estimators of θ= g(x) in a nonparametric regression model Y = g(x) + ε(x∈ (0, 1)p) with missing responses: Imputation and inverse probability weighted esti- mators. Asymptotic normality of the two estimators is established, which is used to construct normal approximation based confidence intervals on θ.展开更多
In this paper,we study the nonparametric estimation of the second infinitesimal moment by using the reweighted Nadaraya-Watson (RNW) approach of the underlying jump diffusion model.We establish strong consistency and ...In this paper,we study the nonparametric estimation of the second infinitesimal moment by using the reweighted Nadaraya-Watson (RNW) approach of the underlying jump diffusion model.We establish strong consistency and asymptotic normality for the estimate of the second infinitesimal moment of continuous time models using the reweighted Nadaraya-Watson estimator to the true function.展开更多
Multiply robust inference has attracted much attention recently in the context of missing response data. An estimation procedure is multiply robust, if it can incorporate information from multiple candidate models, an...Multiply robust inference has attracted much attention recently in the context of missing response data. An estimation procedure is multiply robust, if it can incorporate information from multiple candidate models, and meanwhile the resulting estimator is consistent as long as one of the candidate models is correctly specified. This property is appealing, since it provides the user a flexible modeling strategy with better protection against model misspecification. We explore this attractive property for the regression models with a binary covariate that is missing at random. We start from a reformulation of the celebrated augmented inverse probability weighted estimating equation, and based on this reformulation, we propose a novel combination of the least squares and empirical likelihood to separately handle each of the two types of multiple candidate models,one for the missing variable regression and the other for the missingness mechanism. Due to the separation, all the working models are fused concisely and effectively. The asymptotic normality of our estimator is established through the theory of estimating function with plugged-in nuisance parameter estimates. The finite-sample performance of our procedure is illustrated both through the simulation studies and the analysis of a dementia data collected by the national Alzheimer's coordinating center.展开更多
In this paper, the unknown link function, the direction parameter, and the heteroscedastic variance in single index models are estimated by the random weight method under the random censorship, respectively. The centr...In this paper, the unknown link function, the direction parameter, and the heteroscedastic variance in single index models are estimated by the random weight method under the random censorship, respectively. The central limit theory and the convergence rate of the law of the iterated logarithm for the estimator of the direction parameter are derived, respectively. The optimal convergence rates for the estimators of the link function and the heteroscedastic variance are obtained. Simulation results support the theoretical results of the paper.展开更多
The authors consider the partially linear model relating a response Y to predictors (x, T) with a mean function x^Tβ0 + g(T) when the x's are measured with an additive error. The estimators of parameter β0 are...The authors consider the partially linear model relating a response Y to predictors (x, T) with a mean function x^Tβ0 + g(T) when the x's are measured with an additive error. The estimators of parameter β0 are derived by using the nearest neighbor-generalized randomly weighted least absolute deviation (LAD for short) method. The resulting estimator of the unknown vector 30 is shown to be consistent and asymptotically normal. In addition, the results facilitate the construction of confidence regions and the hypothesis testing for the unknown parameters. Extensive simulations are reported, showing that the proposed method works well in practical settings. The proposed methods are also applied to a data set from the study of an AIDS clinical trial group.展开更多
This paper is concerned with inference of panel data varying-coefficient partially linear models with a one-way error structure. The model is a natural extension of the well-known panel data linear model (due to Balt...This paper is concerned with inference of panel data varying-coefficient partially linear models with a one-way error structure. The model is a natural extension of the well-known panel data linear model (due to Baltagi 1995) to the setting of semiparametric regressions. The authors propose a weighted profile least squares estimator (WPLSE) and a weighted local polynomial estimator (WLPE) for the parametric and nonparametric components, respectively. It is shown that the WPLSE is asymptotically more efficient than the usual profile least squares estimator (PLSE), and that the WLPE is also asymptotically more efficient than the usual local polynomial estimator (LPE). The latter is an interesting result. According to Ruckstuhl, Welsh and Carroll (2000) and Lin and Carroll (2000), ignoring the correlation structure entirely and "pretending" that the data are really independent will result in more efficient estimators when estimating nonparametric regression with longitudinal or panel data. The result in this paper shows that this is not true when the design points of the nonparametric component have a closeness property within groups. The asymptotic properties of the proposed weighted estimators are derived. In addition, a block bootstrap test is proposed for the goodness of fit of models, which can accommodate the correlations within groups illustrate the finite sample performances of the Some simulation studies are conducted to proposed procedures.展开更多
文摘In this paper,a nonconforming rectangular plate element,the modified incomplete biquadratic plate element,is considered. The asympotic optimal L~∞-error estimate is obtained for the plate bending problem. This proof is based on the method of regularized Green's function and 'the trick of auxiliary element'.
基金supported by National Natural Science Foundation of China(Grant Nos.11231010,11171330 and 11371299)Key Laboratory of Random Complex Structures and Data Science,Chinese Academy of Sciences(Grant No.2008DP173182)+1 种基金Beijing Center for Mathematics and Information Interdisciplinary Sciences,the Research Grant Council of Hong Kong(Grant Nos.504011 and 503513)The Hong Kong Polytechnic University
文摘Multivariate recurrent event data arises when study subjects may experience more than one type of recurrent events. In some situations, however, although event times are always observed, event categories may be partially missing. In this paper, an additive-multiplicative rates model is proposed for the analysis of multivariate recurrent event data when event categories are missing at random. A weighted estimating equations approach is developed for parameter estimation, and the resulting estimators are shown to be consistent and asymptotically normal. In addition, a model-checking technique is presented to assess the adequacy of the model. Simulation studies are conducted to evaluate the finite sample behavior of the proposed estimators, and an application to a platelet transfusion reaction study is provided.
基金supported by National Natural Science Foundation of China (Grant No. 10971228),supported by National Natural Science Foundation of China (Grant Nos. 10871024, 10931001)
文摘In this paper, by sharp function estimates and certain weak type endpoint estimates, the authors establish some weighted norm inequalities with Ap weights for the multilinear singular integral operators with non-smooth kernels.
基金National Natural Science Foundation of China (Grant No. 11071200)Natural Science Foundation of Fujian Province of China (Grant No. 2010J01013)
文摘Multilinear commutators and iterated commutators of multilinear fractional integral operators with BMO functions are studied. Both strong type and weak type endpoint weighted estimates involving the multiple weights for such operators are established and the weak type endpoint results are sharp in some senses. In particular, we extend the results given by Cruz-Uribe and Fiorenza in 2003 and 2007 to the multilinear setting. Moreover, we modify the weak type of endpoint weighted estimates and improve the strong type of weighted norm inequalities on the multilinear commutators given by Chen and Xue in 2010 and 2011.
基金supported by National Natural Science Foundation of China (Grant Nos.71101141, 70933003, 11228103, and 11271355)the Hundred Talents Program of the Chinese Academy of SciencesNational Science Foundation of United States (Grant No. DMS-1007167)
文摘The choice of weights in frequentist model average estimators is an important but difficult problem. Liang et al. (2011) suggested a criterion for the choice of weight under a general parametric framework which is termed as the generalized OPT (GOPT) criterion in the present paper. However, no properties and applications of the criterion have been studied. This paper is devoted to the further investigation of the GOPT criterion. We show that how to use this criterion for comparison of some existing weights such as the smoothed AIC-based and BIC-based weights and for the choice between model averaging and model selection. Its connection to the Mallows and ordinary OPT criteria is built. The asymptotic optimality on the criterion in the case of non-random weights is also obtained. Finite sample performance of the GOPT criterion is assessed by simulations. Application to the analysis of two real data sets is presented as well.
基金supported by National Natural Science Foundation of China (Grant Nos. 11401048, 11301037, 11571051 and 11201174)the Natural Science Foundation for Young Scientists of Jilin Province of China (Grant Nos. 20150520055JH and 20150520054JH)
文摘This paper proposes a new weighted quantile regression model for longitudinal data with weights chosen by empirical likelihood(EL). This approach efficiently incorporates the information from the conditional quantile restrictions to account for within-subject correlations. The resulted estimate is computationally simple and has good performance under modest or high within-subject correlation. The efficiency gain is quantified theoretically and illustrated via simulation and a real data application.
基金This research is supported by he National Natural Science Foundation of China under Grant Nos. 10661003 and 10971038, and the Natural Science Foundation of Guangxi under Grant No. 2010GXNSFA013117.
文摘This paper considers two estimators of θ= g(x) in a nonparametric regression model Y = g(x) + ε(x∈ (0, 1)p) with missing responses: Imputation and inverse probability weighted esti- mators. Asymptotic normality of the two estimators is established, which is used to construct normal approximation based confidence intervals on θ.
基金supported by National Natural Science Foundation of China (Grant Nos.10871177,11071213)Research Fund for the Doctor Program of Higher Education of China (Grant No.20090101110020)
文摘In this paper,we study the nonparametric estimation of the second infinitesimal moment by using the reweighted Nadaraya-Watson (RNW) approach of the underlying jump diffusion model.We establish strong consistency and asymptotic normality for the estimate of the second infinitesimal moment of continuous time models using the reweighted Nadaraya-Watson estimator to the true function.
基金supported by National Natural Science Foundation of China(Grant No.11301031)
文摘Multiply robust inference has attracted much attention recently in the context of missing response data. An estimation procedure is multiply robust, if it can incorporate information from multiple candidate models, and meanwhile the resulting estimator is consistent as long as one of the candidate models is correctly specified. This property is appealing, since it provides the user a flexible modeling strategy with better protection against model misspecification. We explore this attractive property for the regression models with a binary covariate that is missing at random. We start from a reformulation of the celebrated augmented inverse probability weighted estimating equation, and based on this reformulation, we propose a novel combination of the least squares and empirical likelihood to separately handle each of the two types of multiple candidate models,one for the missing variable regression and the other for the missingness mechanism. Due to the separation, all the working models are fused concisely and effectively. The asymptotic normality of our estimator is established through the theory of estimating function with plugged-in nuisance parameter estimates. The finite-sample performance of our procedure is illustrated both through the simulation studies and the analysis of a dementia data collected by the national Alzheimer's coordinating center.
基金supported by National Natural Science Foundation of China (Grant Nos. 10731010, 10971012 and 11071015)
文摘In this paper, the unknown link function, the direction parameter, and the heteroscedastic variance in single index models are estimated by the random weight method under the random censorship, respectively. The central limit theory and the convergence rate of the law of the iterated logarithm for the estimator of the direction parameter are derived, respectively. The optimal convergence rates for the estimators of the link function and the heteroscedastic variance are obtained. Simulation results support the theoretical results of the paper.
文摘The authors consider the partially linear model relating a response Y to predictors (x, T) with a mean function x^Tβ0 + g(T) when the x's are measured with an additive error. The estimators of parameter β0 are derived by using the nearest neighbor-generalized randomly weighted least absolute deviation (LAD for short) method. The resulting estimator of the unknown vector 30 is shown to be consistent and asymptotically normal. In addition, the results facilitate the construction of confidence regions and the hypothesis testing for the unknown parameters. Extensive simulations are reported, showing that the proposed method works well in practical settings. The proposed methods are also applied to a data set from the study of an AIDS clinical trial group.
基金supported by the Leading Academic Discipline Program211 Project for Shanghai University of Finance and Economics (the 3rd phase) (No.B803)the Shanghai Leading Academic Discipline Project (No.B210)
文摘This paper is concerned with inference of panel data varying-coefficient partially linear models with a one-way error structure. The model is a natural extension of the well-known panel data linear model (due to Baltagi 1995) to the setting of semiparametric regressions. The authors propose a weighted profile least squares estimator (WPLSE) and a weighted local polynomial estimator (WLPE) for the parametric and nonparametric components, respectively. It is shown that the WPLSE is asymptotically more efficient than the usual profile least squares estimator (PLSE), and that the WLPE is also asymptotically more efficient than the usual local polynomial estimator (LPE). The latter is an interesting result. According to Ruckstuhl, Welsh and Carroll (2000) and Lin and Carroll (2000), ignoring the correlation structure entirely and "pretending" that the data are really independent will result in more efficient estimators when estimating nonparametric regression with longitudinal or panel data. The result in this paper shows that this is not true when the design points of the nonparametric component have a closeness property within groups. The asymptotic properties of the proposed weighted estimators are derived. In addition, a block bootstrap test is proposed for the goodness of fit of models, which can accommodate the correlations within groups illustrate the finite sample performances of the Some simulation studies are conducted to proposed procedures.