This paper discusses a distributed design for clustering based on the K-means algorithm in a switching multi-agent network, for the case when data are decentralized stored and unavailable to all agents. The authors pr...This paper discusses a distributed design for clustering based on the K-means algorithm in a switching multi-agent network, for the case when data are decentralized stored and unavailable to all agents. The authors propose a consensus-based algorithm in distributed case, that is, the double- clock consensus-based K-means algorithm (DCKA). With mild connectivity conditions, the authors show convergence of DCKA to guarantee a distributed solution to the clustering problem, even though the network topology is time-varying. Moreover, the authors provide experimental results on vari- ous clustering datasets to illustrate the effectiveness of the fully distributed algorithm DCKA, whose performance may be better than that of the centralized K-means algorithm.展开更多
基金supported by the National Key Research and Development Program of China under Grant No.2016YFB0901902the National Natural Science Foundation of China under Grant Nos.61573344,61333001,61733018,and 61374168
文摘This paper discusses a distributed design for clustering based on the K-means algorithm in a switching multi-agent network, for the case when data are decentralized stored and unavailable to all agents. The authors propose a consensus-based algorithm in distributed case, that is, the double- clock consensus-based K-means algorithm (DCKA). With mild connectivity conditions, the authors show convergence of DCKA to guarantee a distributed solution to the clustering problem, even though the network topology is time-varying. Moreover, the authors provide experimental results on vari- ous clustering datasets to illustrate the effectiveness of the fully distributed algorithm DCKA, whose performance may be better than that of the centralized K-means algorithm.