期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
图象序列运动目标特征点对应的极指数栅格方法 被引量:2
1
作者 张海燕 宋克欧 王东木 《中国图象图形学报(A辑)》 CSCD 北大核心 2003年第5期527-532,共6页
目前的图象序列特征点对应方法是建立在相邻图象间的特征点在运动形式上变化不大 ,即相邻两帧图象间的时间间隔较小这样的一个假设之上的 ,但当相邻图象间的时间间隔较大时 ,则这些方法很难找到对应的特征点 .为此 ,提出了一个由粗到细... 目前的图象序列特征点对应方法是建立在相邻图象间的特征点在运动形式上变化不大 ,即相邻两帧图象间的时间间隔较小这样的一个假设之上的 ,但当相邻图象间的时间间隔较大时 ,则这些方法很难找到对应的特征点 .为此 ,提出了一个由粗到细解决图象序列特征点对应的新方法 ,该方法首先进行粗定位 ,即利用极指数栅格方法来得到运动后目标特征点的大致范围 ;然后通过细定位来得到对应的特征点 .为了使人们对该方法有一全面了解 ,还介绍了该方法的原理 ,并给出了实验结果 .实验证明 ,该方法可以很好地解决时间间隔较大的两帧图象间的特征点对应问题 ,其最大的优点是比通常的方法简单有效 . 展开更多
关键词 指数栅格法 图象序列 特征点对应 分辨率 极对数坐标变换技术
下载PDF
目标识别的极指数栅格方法 被引量:3
2
作者 张海燕 刘大昕 王东木 《哈尔滨工程大学学报》 EI CAS CSCD 2004年第4期491-494,共4页
在极对数坐标下常常通过傅立叶变换得到目标的轮廓不变量来识别目标,提取的特征量多且花费的时间长,因此提出了一种新的目标识别的极指数栅格方法.该方法首先将直角坐标中的目标映射到极对数坐标下,把包围变换中心的目标轮廓变换成一维... 在极对数坐标下常常通过傅立叶变换得到目标的轮廓不变量来识别目标,提取的特征量多且花费的时间长,因此提出了一种新的目标识别的极指数栅格方法.该方法首先将直角坐标中的目标映射到极对数坐标下,把包围变换中心的目标轮廓变换成一维目标曲线,然后提取曲线的结构特征,包括目标的跨度、目标曲线面积比率和目标曲线分布状况,这些结构特征具有旋转、缩放、平移不变性.用BP网络对3个二维目标进行学习和识别,实验证明,利用结构特征进行识别得到了较好的识别效果,并且花费的时间少,但是本方法仅适用于没有滚动和扭动的单个运动目标识别. 展开更多
关键词 目标识别 指数栅格技术 极对数坐标变换
下载PDF
ANTI-ROTATION AND ANTI-SCALE IMAGE MATCHING ALGORITHM FOR NAVIGATION SYSTEM 被引量:1
3
作者 冷雪飞 刘建业 +1 位作者 李明星 熊智 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2007年第4期294-299,共6页
Based on the inertial navigation system, the influences of the excursion of the inertial navigation system and the measurement error of the wireless pressure altimeter on the rotation and scale of the real image are q... Based on the inertial navigation system, the influences of the excursion of the inertial navigation system and the measurement error of the wireless pressure altimeter on the rotation and scale of the real image are quantitatively analyzed in scene matching. The log-polar transform (LPT) is utilized and an anti-rotation and anti- scale image matching algorithm is proposed based on the image edge feature point extraction. In the algorithm, the center point is combined with its four-neighbor points, and the corresponding computing process is put forward. Simulation results show that in the image rotation and scale variation range resulted from the navigation system error and the measurement error of the wireless pressure altimeter, the proposed image matching algo- rithm can satisfy the accuracy demands of the scene aided navigation system and provide the location error-correcting information of the system. 展开更多
关键词 log-polar transform edge feature matching inertial navigation system image matching
下载PDF
Biological object recognition approach using space variant resolution and pigeon-inspired optimization for UAV 被引量:8
4
作者 XIN Long XIAN Ning 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2017年第10期1577-1584,共8页
Recognizing the target from a rotated and scaled image is an important and difficult task for computer vision. Visual system of humans has a unique space variant resolution mechanism(SVR) and log-polar transformations... Recognizing the target from a rotated and scaled image is an important and difficult task for computer vision. Visual system of humans has a unique space variant resolution mechanism(SVR) and log-polar transformations(LPT) is a mapping method that is invariant to rotation and scale. Motivated by biological vision, we propose a novel global LPT based template-matching algorithm(GLPT-TM) which is invariant to rotational and scale changes; and with pigeon-inspired optimization(PIO) used to optimize search strategy, a hybrid model of SVR and pigeon-inspired optimization(SVRPIO) is proposed to accomplish object recognition for unmanned aerial vehicles(UAV) with rotational and scale changes of the target. To demonstrate the efficiency, effectiveness and reliability of the proposed method, a series of experiments are carried out. By rotating and scaling the sample image randomly and recognizing the target with the method, the experimental results demonstrate that our proposed method is not only efficient due to the optimization, but effective and accurate in recognizing the target for UAV. 展开更多
关键词 biological vision space variant resolution mechanism (SVR) log-polar transformations (LPT) pigeon-inspiredoptimization (PIO) object recognition
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部