Based on the inertial navigation system, the influences of the excursion of the inertial navigation system and the measurement error of the wireless pressure altimeter on the rotation and scale of the real image are q...Based on the inertial navigation system, the influences of the excursion of the inertial navigation system and the measurement error of the wireless pressure altimeter on the rotation and scale of the real image are quantitatively analyzed in scene matching. The log-polar transform (LPT) is utilized and an anti-rotation and anti- scale image matching algorithm is proposed based on the image edge feature point extraction. In the algorithm, the center point is combined with its four-neighbor points, and the corresponding computing process is put forward. Simulation results show that in the image rotation and scale variation range resulted from the navigation system error and the measurement error of the wireless pressure altimeter, the proposed image matching algo- rithm can satisfy the accuracy demands of the scene aided navigation system and provide the location error-correcting information of the system.展开更多
Recognizing the target from a rotated and scaled image is an important and difficult task for computer vision. Visual system of humans has a unique space variant resolution mechanism(SVR) and log-polar transformations...Recognizing the target from a rotated and scaled image is an important and difficult task for computer vision. Visual system of humans has a unique space variant resolution mechanism(SVR) and log-polar transformations(LPT) is a mapping method that is invariant to rotation and scale. Motivated by biological vision, we propose a novel global LPT based template-matching algorithm(GLPT-TM) which is invariant to rotational and scale changes; and with pigeon-inspired optimization(PIO) used to optimize search strategy, a hybrid model of SVR and pigeon-inspired optimization(SVRPIO) is proposed to accomplish object recognition for unmanned aerial vehicles(UAV) with rotational and scale changes of the target. To demonstrate the efficiency, effectiveness and reliability of the proposed method, a series of experiments are carried out. By rotating and scaling the sample image randomly and recognizing the target with the method, the experimental results demonstrate that our proposed method is not only efficient due to the optimization, but effective and accurate in recognizing the target for UAV.展开更多
文摘Based on the inertial navigation system, the influences of the excursion of the inertial navigation system and the measurement error of the wireless pressure altimeter on the rotation and scale of the real image are quantitatively analyzed in scene matching. The log-polar transform (LPT) is utilized and an anti-rotation and anti- scale image matching algorithm is proposed based on the image edge feature point extraction. In the algorithm, the center point is combined with its four-neighbor points, and the corresponding computing process is put forward. Simulation results show that in the image rotation and scale variation range resulted from the navigation system error and the measurement error of the wireless pressure altimeter, the proposed image matching algo- rithm can satisfy the accuracy demands of the scene aided navigation system and provide the location error-correcting information of the system.
基金the Aeronautical Foundation of China(Grant No.2015ZA51013)the National Natural Science Foundation of China(Grant No.61673327)
文摘Recognizing the target from a rotated and scaled image is an important and difficult task for computer vision. Visual system of humans has a unique space variant resolution mechanism(SVR) and log-polar transformations(LPT) is a mapping method that is invariant to rotation and scale. Motivated by biological vision, we propose a novel global LPT based template-matching algorithm(GLPT-TM) which is invariant to rotational and scale changes; and with pigeon-inspired optimization(PIO) used to optimize search strategy, a hybrid model of SVR and pigeon-inspired optimization(SVRPIO) is proposed to accomplish object recognition for unmanned aerial vehicles(UAV) with rotational and scale changes of the target. To demonstrate the efficiency, effectiveness and reliability of the proposed method, a series of experiments are carried out. By rotating and scaling the sample image randomly and recognizing the target with the method, the experimental results demonstrate that our proposed method is not only efficient due to the optimization, but effective and accurate in recognizing the target for UAV.