Adsorption behavior and electronic structure of tin-phthalocyanine (SnPc) on Ag(111) surface with Sn-up and Sn-down conformations are investigated using first-principles calculations. Two predicted adsorption configur...Adsorption behavior and electronic structure of tin-phthalocyanine (SnPc) on Ag(111) surface with Sn-up and Sn-down conformations are investigated using first-principles calculations. Two predicted adsorption configurations agree well with the experimentally determined structures. SnPc molecule energetically prefers to adsorb on Ag(111) surface with Sn-down conformation. The energy required to move the central Sn atom through the frame of a phthalocyanine molecule, switching from the Sn-up to Sn-down conformation, is about 1.68 eV. The simulated scanning tunneling microscopy images reproduce the main features of experimental observations. Moreover, the experimentally proposed hole attachment mechanism is verified based on the calculated density of states of SnPc on Ag(111) with three different adsorption configurations.展开更多
The effects of hydrostatic pressure of SrWeO3 are investigated by means of generalized gradient approximation (GGA) plus on-site Coulomb interaction corrections (GGA+U) method within the framework of density func...The effects of hydrostatic pressure of SrWeO3 are investigated by means of generalized gradient approximation (GGA) plus on-site Coulomb interaction corrections (GGA+U) method within the framework of density functional theory (DFT). Magnetic phase diagrams and structural parameters of SrTcO3 as a function of pressure are predicted. The magnetic ground state of SrTcO3 is found to keep in a G-type antiferromagnetic (G-AFM) structure under the pressure varying from 0 to 100 GPa. With the increase of the pressure, magnetic exchange energy increases, indicating a higher magnetic ordering temperature for SrTcO3 under a larger pressure. Besides the volume of the unit cell, lattice constants, and the bond length, the angles between typical Tc-O-Tc and Sr-O-Sr also decrease with the pressure, leading to strong structural distortions. Very obvious displace- ments of Sr and O atoms are observed under the pressure. Our work provides necessary understanding on electronic structures of SrTcO3 under high pressures.展开更多
文摘Adsorption behavior and electronic structure of tin-phthalocyanine (SnPc) on Ag(111) surface with Sn-up and Sn-down conformations are investigated using first-principles calculations. Two predicted adsorption configurations agree well with the experimentally determined structures. SnPc molecule energetically prefers to adsorb on Ag(111) surface with Sn-down conformation. The energy required to move the central Sn atom through the frame of a phthalocyanine molecule, switching from the Sn-up to Sn-down conformation, is about 1.68 eV. The simulated scanning tunneling microscopy images reproduce the main features of experimental observations. Moreover, the experimentally proposed hole attachment mechanism is verified based on the calculated density of states of SnPc on Ag(111) with three different adsorption configurations.
基金supported by the National Natural Science Foundation of China (Grant Nos. 10904104 and 11164026)the High Performance Computing Center of Suzhou University of Science and Technology(SUST)
文摘The effects of hydrostatic pressure of SrWeO3 are investigated by means of generalized gradient approximation (GGA) plus on-site Coulomb interaction corrections (GGA+U) method within the framework of density functional theory (DFT). Magnetic phase diagrams and structural parameters of SrTcO3 as a function of pressure are predicted. The magnetic ground state of SrTcO3 is found to keep in a G-type antiferromagnetic (G-AFM) structure under the pressure varying from 0 to 100 GPa. With the increase of the pressure, magnetic exchange energy increases, indicating a higher magnetic ordering temperature for SrTcO3 under a larger pressure. Besides the volume of the unit cell, lattice constants, and the bond length, the angles between typical Tc-O-Tc and Sr-O-Sr also decrease with the pressure, leading to strong structural distortions. Very obvious displace- ments of Sr and O atoms are observed under the pressure. Our work provides necessary understanding on electronic structures of SrTcO3 under high pressures.