期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
用子空间粒子群聚类算法识别Folksonomy标签冗余的研究
1
作者 王晓帅 覃华 +1 位作者 丁立朵 马翩翩 《计算机科学》 CSCD 北大核心 2012年第B06期283-287,共5页
Web2.0标签系统中经常包含很多冗余的标签,标签冗余会增加用户选择喜好项目时的负担,从而影响用户建模和对推荐系统的评估。标签数据集通常存在着大量不相关或是冗余的特征,而不同簇之间的相关特征子集又是不一样的,所以应该从不同的特... Web2.0标签系统中经常包含很多冗余的标签,标签冗余会增加用户选择喜好项目时的负担,从而影响用户建模和对推荐系统的评估。标签数据集通常存在着大量不相关或是冗余的特征,而不同簇之间的相关特征子集又是不一样的,所以应该从不同的特征子集中来发现簇。提出使用子空间粒子群聚类识别标签冗余,算法采用指数型变权类似K-means的目标函数,该函数对变量权值的改变更加敏感。在此基础上利用粒子群优化目标函数搜寻得到全局最优的标签聚类,提高抽取冗余标签的准确度。实验结果表明,此算法具有较强的全局搜索能力,应用于标签冗余识别获得了更好的精度。 展开更多
关键词 Web2.0标签推荐系统 标签冗余 子空间粒子群聚类
下载PDF
核K-Means聚类在Folksonomy标签模糊和冗余中的应用 被引量:3
2
作者 张新伦 苏一丹 惠刚刚 《计算机应用》 CSCD 北大核心 2011年第3期680-682,697,共4页
现有的Folksonomy标签推荐系统中,标签模糊会导致系统推荐不准确,并且影响用户建模的准确性,而标签冗余妨碍了对系统的评估。利用K-Means聚类结果抽取模糊和冗余标签时,聚类效果较差导致抽取不准确。提出使用核K-Means聚类处理标签模糊... 现有的Folksonomy标签推荐系统中,标签模糊会导致系统推荐不准确,并且影响用户建模的准确性,而标签冗余妨碍了对系统的评估。利用K-Means聚类结果抽取模糊和冗余标签时,聚类效果较差导致抽取不准确。提出使用核K-Means聚类处理标签模糊和冗余,通过非线性映射能够较好地分辨、提取并放大样本中有用的特征,提高抽取模糊标签和冗余标签的准确度。实验结果表明:核K-Means聚类对标签和资源的聚类效果更好,抽取的模糊标签和冗余标签也更准确。 展开更多
关键词 Folksonomy标签推荐系统 标签模糊 标签冗余 核K-Means聚类
下载PDF
标签模糊和冗余在标签推荐中的研究及应用
3
作者 张新伦 苏一丹 覃希 《计算机应用研究》 CSCD 北大核心 2011年第8期2971-2973,共3页
现有的Folksonomy标签推荐系统使用的推荐算法没有考虑标签模糊和冗余问题,影响了用户建模和对推荐系统评估的准确性,并且降低了系统的推荐质量,增加了用户选择喜好项目时的负担。通过对标签推荐系统的研究,将标签模糊和冗余应用到标签... 现有的Folksonomy标签推荐系统使用的推荐算法没有考虑标签模糊和冗余问题,影响了用户建模和对推荐系统评估的准确性,并且降低了系统的推荐质量,增加了用户选择喜好项目时的负担。通过对标签推荐系统的研究,将标签模糊和冗余应用到标签推荐算法当中,有助于提高系统的推荐质量,并且能提供更合理的评价方法。实验结果表明:经过标签模糊和冗余处理的标签推荐算法显著地提高了推荐系统的推荐质量。 展开更多
关键词 标签推荐系统 标签模糊 标签冗余 标签推荐算法 推荐质量
下载PDF
基于社会化标注的博客标签推荐方法 被引量:10
4
作者 赵亚楠 董晶 董佳梁 《计算机工程与设计》 CSCD 北大核心 2012年第12期4609-4613,共5页
为了提高博客系统推荐标签的质量,分析了现有的标签推荐算法及相关技术,提出了一种基于社会化标注的博客标签推荐方法。该方法的优势在于:利用相似博客的社会化标签作为候选标签集,确保了推荐标签的全面性和可用性;基于TF-IDF相似度方... 为了提高博客系统推荐标签的质量,分析了现有的标签推荐算法及相关技术,提出了一种基于社会化标注的博客标签推荐方法。该方法的优势在于:利用相似博客的社会化标签作为候选标签集,确保了推荐标签的全面性和可用性;基于TF-IDF相似度方法定义筛选步骤去除候选标签集中冗余和冷僻的标签,提高了推荐标签的准确性和高效性。实验结果表明了该方法的有效性。 展开更多
关键词 社会化标注 标签推荐算法 典型相关分析 文本特征加权方法 标签冗余
下载PDF
一种融合个性化与多样性的人物标签推荐方法 被引量:6
5
作者 颛悦 熊锦华 程学旗 《中文信息学报》 CSCD 北大核心 2017年第2期154-162,共9页
针对人物标签推荐中多样性及推荐标签质量问题,该文提出了一种融合个性化与多样性的人物标签推荐方法。该方法使用主题模型对用户关注对象建模,通过聚类分析把具有相似言论的对象划分到同一类簇;然后对每个类簇的标签进行冗余处理,并选... 针对人物标签推荐中多样性及推荐标签质量问题,该文提出了一种融合个性化与多样性的人物标签推荐方法。该方法使用主题模型对用户关注对象建模,通过聚类分析把具有相似言论的对象划分到同一类簇;然后对每个类簇的标签进行冗余处理,并选取代表性标签;最后对不同类簇中的标签融合排序,以获取Top-K个标签推荐给用户。实验结果表明,与已有推荐方法相比,该方法在反映用户兴趣爱好的同时,能显著提高标签推荐质量和推荐结果的多样性。 展开更多
关键词 人物标签推荐 多样性推荐 标签冗余 标签质量
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部