The attribute recognition model (ARM) has been widely used to make comprehensive assessment in many engineering fields, such as environment, ecology, and economy. However, large numbers of experiments indicate that th...The attribute recognition model (ARM) has been widely used to make comprehensive assessment in many engineering fields, such as environment, ecology, and economy. However, large numbers of experiments indicate that the value of weight vector has no relativity to its initial value but depends on the data of Quality Standard and actual samples. In the present study, the ARM is enhanced with the technique of data driving, which means some more groups of data from the Quality Standard are selected with the uniform random method to make the calculation of weight values more rational and more scientific. This improved attribute recognition model (IARM) is applied to a real case of assessment on seawater quality. The given example shows that the IARM has the merits of being simple in principle, easy to operate, and capable of producing objective results, and is therefore of use in evaluation problems in marine environment science.展开更多
A new method for automatic salient object segmentation is presented.Salient object segmentation is an important research area in the field of object recognition,image retrieval,image editing,scene reconstruction,and 2...A new method for automatic salient object segmentation is presented.Salient object segmentation is an important research area in the field of object recognition,image retrieval,image editing,scene reconstruction,and 2D/3D conversion.In this work,salient object segmentation is performed using saliency map and color segmentation.Edge,color and intensity feature are extracted from mean shift segmentation(MSS)image,and saliency map is created using these features.First average saliency per segment image is calculated using the color information from MSS image and generated saliency map.Then,second average saliency per segment image is calculated by applying same procedure for the first image to the thresholding,labeling,and hole-filling applied image.Thresholding,labeling and hole-filling are applied to the mean image of the generated two images to get the final salient object segmentation.The effectiveness of proposed method is proved by showing 80%,89%and 80%of precision,recall and F-measure values from the generated salient object segmentation image and ground truth image.展开更多
The knowledge accumulation through knowledge acquisition and technological learning is a necessary condition for enterprise upgrading in global chains.The knowledge flow obstacle caused by the knowledge barriers is th...The knowledge accumulation through knowledge acquisition and technological learning is a necessary condition for enterprise upgrading in global chains.The knowledge flow obstacle caused by the knowledge barriers is the major reason for low-locked in the global value chain based on the analysis of knowledge flow,where standard is one of the most cmmonly used knowledge barriers.In this regard,a standard strategy based on similar technology development can be adopted to step over knowledge barriers and achieve upgrading.展开更多
In view of current situation of bad data synchronization, image blurring and tracking station stability in tracking target identification, a kind of tracking target identification model based on multiple algorithms wa...In view of current situation of bad data synchronization, image blurring and tracking station stability in tracking target identification, a kind of tracking target identification model based on multiple algorithms was put forward, firstly establishing the image degradation model, using the wavelet algorithm for image preprocessing, doing image edge segmentation by using Robert algorithm after pretreatment, then using the maximum variance threshold method for image threshold segmentation, then extracting target features from the segmented image, and finally using the ABS algorithm to finish target tracking. Experiments proved the proposed model practical and effective.展开更多
基金The authors would like to acknowledge the funding support of the National Natural Science Foundation of China (50579009, 70471090) the National 10 th Five Year Scientific Project of China for Tackling the Key Problems (2004BA608B-02 - 02) and the Excellence Youth Teacher Sustentation Fund Program of the Ministry of Education of China (Department of Education and Personnel [2002] 350).
文摘The attribute recognition model (ARM) has been widely used to make comprehensive assessment in many engineering fields, such as environment, ecology, and economy. However, large numbers of experiments indicate that the value of weight vector has no relativity to its initial value but depends on the data of Quality Standard and actual samples. In the present study, the ARM is enhanced with the technique of data driving, which means some more groups of data from the Quality Standard are selected with the uniform random method to make the calculation of weight values more rational and more scientific. This improved attribute recognition model (IARM) is applied to a real case of assessment on seawater quality. The given example shows that the IARM has the merits of being simple in principle, easy to operate, and capable of producing objective results, and is therefore of use in evaluation problems in marine environment science.
文摘A new method for automatic salient object segmentation is presented.Salient object segmentation is an important research area in the field of object recognition,image retrieval,image editing,scene reconstruction,and 2D/3D conversion.In this work,salient object segmentation is performed using saliency map and color segmentation.Edge,color and intensity feature are extracted from mean shift segmentation(MSS)image,and saliency map is created using these features.First average saliency per segment image is calculated using the color information from MSS image and generated saliency map.Then,second average saliency per segment image is calculated by applying same procedure for the first image to the thresholding,labeling,and hole-filling applied image.Thresholding,labeling and hole-filling are applied to the mean image of the generated two images to get the final salient object segmentation.The effectiveness of proposed method is proved by showing 80%,89%and 80%of precision,recall and F-measure values from the generated salient object segmentation image and ground truth image.
文摘The knowledge accumulation through knowledge acquisition and technological learning is a necessary condition for enterprise upgrading in global chains.The knowledge flow obstacle caused by the knowledge barriers is the major reason for low-locked in the global value chain based on the analysis of knowledge flow,where standard is one of the most cmmonly used knowledge barriers.In this regard,a standard strategy based on similar technology development can be adopted to step over knowledge barriers and achieve upgrading.
文摘In view of current situation of bad data synchronization, image blurring and tracking station stability in tracking target identification, a kind of tracking target identification model based on multiple algorithms was put forward, firstly establishing the image degradation model, using the wavelet algorithm for image preprocessing, doing image edge segmentation by using Robert algorithm after pretreatment, then using the maximum variance threshold method for image threshold segmentation, then extracting target features from the segmented image, and finally using the ABS algorithm to finish target tracking. Experiments proved the proposed model practical and effective.