期刊文献+
共找到15篇文章
< 1 >
每页显示 20 50 100
基于栈式稀疏自编码器的低信噪比下低截获概率雷达信号调制类型识别 被引量:38
1
作者 郭立民 寇韵涵 +1 位作者 陈涛 张明 《电子与信息学报》 EI CSCD 北大核心 2018年第4期875-881,共7页
针对低截获概率(LPI)雷达信号识别率低且特征提取困难的问题,该文提出一种基于Choi-Williams分布(CWD)和栈式稀疏自编码器(sSAE)的自动分类识别系统。该系统从反映信号本质特征的时频图像入手,首先对LPI雷达信号进行CWD时频分析,获取2... 针对低截获概率(LPI)雷达信号识别率低且特征提取困难的问题,该文提出一种基于Choi-Williams分布(CWD)和栈式稀疏自编码器(sSAE)的自动分类识别系统。该系统从反映信号本质特征的时频图像入手,首先对LPI雷达信号进行CWD时频分析,获取2维时频图像;然后对得到的时频原始图像进行预处理,并把预处理后的图像送入多层稀疏自编码器(SAE)进行离线训练;最后把SAE自动提取的特征输入softmax分类器,实现雷达信号的在线分类识别。仿真结果表明,信噪比为-6 dB时,该系统对8种LPI雷达信号(LFM,BPSK,Costas,Frank和T1~T4)的整体平均识别率达到96.4%,在低信噪比条件下明显优于人工设计提取信号特征的识别方法。 展开更多
关键词 低截获概率雷达 CWD时频分析 图像预处理 深度学习 栈式稀疏自编码器
下载PDF
基于栈式稀疏自编码器的抽油机故障诊断研究 被引量:4
2
作者 樊浩杰 仲志丹 李鹏辉 《机床与液压》 北大核心 2019年第1期157-161,共5页
为了及时发现抽油机故障,减少生产成本,提高生产效率,通过分析不同形状的抽油机示功图来及时准确地判断抽油机工作状况很有必要。传统人工识别方法不能实现抽油机工况实时诊断,而传统智能算法识别准确度低,故提出一种基于栈式稀疏自编... 为了及时发现抽油机故障,减少生产成本,提高生产效率,通过分析不同形状的抽油机示功图来及时准确地判断抽油机工作状况很有必要。传统人工识别方法不能实现抽油机工况实时诊断,而传统智能算法识别准确度低,故提出一种基于栈式稀疏自编码器的抽油机示功图识别方法,用于抽油机故障诊断。该方法通过栈式稀疏自编码器自动提取示功图数据深层可分性特征,然后利用学习到的特征结合对应的样本标签通过支持向量机进行有监督训练与分类。将采集的中原油田实测示功图对该方法进行实验,结果表明该方法具有较高的示功图识别速度和识别准确度。该方法为快速准确地进行抽油机故障诊断提供了参考。 展开更多
关键词 栈式稀疏自编码器 支持向量机 示功图识别 故障诊断 特征学习
下载PDF
基于栈式稀疏自编码器的青光眼眼底图像识别研究 被引量:2
3
作者 曹桂铭 丁香乾 高政绪 《计算机与数字工程》 2019年第2期431-435,共5页
青光眼是一种常见的威胁视神经及视觉功能的眼病,其具有发病率高,难以察觉等特点。但是目前对青光眼的识别诊断方法还不是很完善,且识别方法复杂,识别率也不高。因此提出了一种基于栈式稀疏自编码器的眼底图像特征提取及图像识别的方法... 青光眼是一种常见的威胁视神经及视觉功能的眼病,其具有发病率高,难以察觉等特点。但是目前对青光眼的识别诊断方法还不是很完善,且识别方法复杂,识别率也不高。因此提出了一种基于栈式稀疏自编码器的眼底图像特征提取及图像识别的方法。该方法采用逐层贪婪训练法从无标签的数据集中学习到数据的内部特征,将学习到的特征作为softmax分类器的输入。然后利用带标签的数据通过反向传播算法对稀疏自编码器进行调优。仿真实验分析中,使用测试集数据对该方法进行验证,精确度可达89%,并且优于实验中的其他方法,对青光眼的识别具有一定的实用价值。 展开更多
关键词 青光眼 眼底图像 栈式稀疏自编码器 特征提取 图像识别
下载PDF
基于栈式稀疏自编码器的矿用变压器故障诊断 被引量:7
4
作者 许倩文 吉兴全 +2 位作者 张玉振 李军 于永进 《工矿自动化》 北大核心 2018年第10期33-37,共5页
鉴于将深度学习应用于变压器故障诊断具有良好的故障诊断效果,提出了一种基于栈式稀疏自编码器的矿用变压器故障诊断方法。通过在自编码器隐含层引入稀疏项限制构成稀疏自编码器,再将多个稀疏自编码器进行堆叠形成栈式稀疏自编码器,并以... 鉴于将深度学习应用于变压器故障诊断具有良好的故障诊断效果,提出了一种基于栈式稀疏自编码器的矿用变压器故障诊断方法。通过在自编码器隐含层引入稀疏项限制构成稀疏自编码器,再将多个稀疏自编码器进行堆叠形成栈式稀疏自编码器,并以Softmax分类器作为输出层,建立矿用变压器故障诊断模型;利用大量无标签样本对模型进行无监督预训练,并通过有监督微调优化模型参数。算例分析结果表明,与栈式自编码器相比,栈式稀疏自编码器应用于矿用变压器故障诊断具有更高的准确率。 展开更多
关键词 矿用变压器 故障诊断 深度学习 栈式稀疏自编码器 Softmax分类器
下载PDF
基于栈式稀疏自编码器的有源欺骗干扰识别 被引量:6
5
作者 阮怀林 杨兴宇 《探测与控制学报》 CSCD 北大核心 2018年第4期62-67,共6页
针对传统方法在欺骗干扰特征提取时需要依赖人工经验的缺点,提出了基于栈式稀疏自编码器(Stacked Sparse Autoencoder)的有源欺骗干扰识别算法。该算法对干扰下的雷达接收信号进行时频分析,对时频特征进行降维,利用无标签样本对特征提... 针对传统方法在欺骗干扰特征提取时需要依赖人工经验的缺点,提出了基于栈式稀疏自编码器(Stacked Sparse Autoencoder)的有源欺骗干扰识别算法。该算法对干扰下的雷达接收信号进行时频分析,对时频特征进行降维,利用无标签样本对特征提取模型进行预训练,再通过少量有标签样本进行监督精校。最后利用soft max分类器完成有源干扰的识别。仿真实验证明,该方法有较高的识别率,特别是该方法受信噪比影响较少,说明了深度学习方法应用于雷达欺骗干扰信号分类识别领域的可行性。相较于其他文献方法,该算法拥有更好的实验效果,证明了该方法的优越性。 展开更多
关键词 欺骗干扰 干扰识别 时频分析 深度学习 栈式稀疏自编码器
下载PDF
基于栈式稀疏自编码器的新型干扰识别 被引量:4
6
作者 杨兴宇 阮怀林 《现代雷达》 CSCD 北大核心 2018年第5期21-27,共7页
为了有效应对频谱弥散干扰(SMSP)和切片组合干扰(C&I)两种新型干扰,提出了一种基于栈式稀疏自编码器的识别算法。该算法首先对于扰与否的雷达接收信号进行双谱分析;然后对双谱特征进行降维,得到高维样本。预训练阶段,构造稀疏... 为了有效应对频谱弥散干扰(SMSP)和切片组合干扰(C&I)两种新型干扰,提出了一种基于栈式稀疏自编码器的识别算法。该算法首先对于扰与否的雷达接收信号进行双谱分析;然后对双谱特征进行降维,得到高维样本。预训练阶段,构造稀疏自编码器神经网络模型进行无标签样本的预训练;然后根据有标签数据对该模型参数进行有监督微调;最后利用Softmax分类器完成新型干扰的识别。仿真实验证明该方法有较高的识别率,特别是相较于其他文献方法,该方法受信噪比影响最小且识别效果最佳。说明了深度学习方法应用于雷达新型干扰信号识别领域的可行性和优越性。 展开更多
关键词 新型干扰 干扰识别 双谱分析 降维 栈式稀疏自编码器
原文传递
拉曼光谱结合改进稀疏编码器特征优选的成品油混合浓度预测方法
7
作者 董晓炜 蒋春旭 +3 位作者 李华栋 任琪 曹杰 王海龙 《分析科学学报》 CAS CSCD 北大核心 2024年第1期35-42,共8页
成品油混合浓度的预测对成品油顺序输送过程中的安全监控、混油段分割具有重要的意义。本研究配制92#汽油-3#航煤以及3#航煤-0#车柴两组包含不同浓度的混合样品,并对其进行拉曼光谱采集;依次采用归一化、多元散射校正、BaselineWavelet... 成品油混合浓度的预测对成品油顺序输送过程中的安全监控、混油段分割具有重要的意义。本研究配制92#汽油-3#航煤以及3#航煤-0#车柴两组包含不同浓度的混合样品,并对其进行拉曼光谱采集;依次采用归一化、多元散射校正、BaselineWavelet基线校正3种光谱预处理方法进行优化;之后采用改进的栈式稀疏自编码器(Stacked Sparse Autoencoder,SSAE)模型对预处理之后的拉曼光谱进行稀疏特征提取,并结合全连接层进行回归预测;最后根据均方根误差(Root Mean Square Error,RMSE)和决定系数(R^(2))两项评价指标,与偏最小二乘回归(Partial Least Square Regression,PLSR)、最小二乘支持向量回归(Least Square Support Vector Machine,LSSVR)以及SSAE 3种模型进行对比。结果表明:改进的SSAE-FC模型表现出更优的预测精度和稳定性,92#汽油-3#航煤混油测试集的R^(2)和RMSEC指标分别为0.9952和0.8932,3#航煤-0#车柴混油测试集的R^(2)和RMSEC指标分别为0.9837和1.1967,且学习得到的稀疏特征的可解释性强。 展开更多
关键词 拉曼光谱 光谱预处理 定量分析 栈式稀疏自编码器 混油浓度
下载PDF
基于栈式稀疏自编码器的孤独症严重程度预测 被引量:3
8
作者 车敏 王丽亚 《工业工程与管理》 CSSCI 北大核心 2020年第4期25-31,共7页
有效的早期诊断对孤独症有着重大意义。为此,提出一种综合考虑遗传因素及环境因素预测孤独症严重程度的方法。根据儿童孤独症评定量表(CARS),从孤独症门诊收集了样本集,建立基于栈式稀疏自编码器结合Softmax分类器的预测模型,并与常用... 有效的早期诊断对孤独症有着重大意义。为此,提出一种综合考虑遗传因素及环境因素预测孤独症严重程度的方法。根据儿童孤独症评定量表(CARS),从孤独症门诊收集了样本集,建立基于栈式稀疏自编码器结合Softmax分类器的预测模型,并与常用的决策树、支持向量机方法进行了比较。经过试验证明,所提出的基于栈式稀疏自编码器的模型预测孤独症严重程度的准确率最高。 展开更多
关键词 孤独症严重程度 栈式稀疏自编码器 Softmax分类器
原文传递
基于SSAE-IARO-BiLSTM的工业过程故障诊断研究
9
作者 张瑞成 孙伟良 梁卫征 《振动与冲击》 EI CSCD 北大核心 2024年第15期244-250,260,共8页
针对工业过程故障诊断精度低的问题,提出了一种基于栈式稀疏自编码网络(stacked sparse auto-encoder network, SSAE)和改进人工兔算法优化双向长短时记忆神经网络(improved artificial rabbit algorithm optimized bidirectional long ... 针对工业过程故障诊断精度低的问题,提出了一种基于栈式稀疏自编码网络(stacked sparse auto-encoder network, SSAE)和改进人工兔算法优化双向长短时记忆神经网络(improved artificial rabbit algorithm optimized bidirectional long short-term memory neural network, IARO-BiLSTM)的故障诊断方法。首先,利用SSAE网络强大的特征提取能力,实现对原始数据进行降维处理;其次,引入Circle混沌映射以达到丰富种群数量的目的,提出权重系数和Levy飞行机制改进人工兔算法的位置更新公式,提高人工兔算法的寻优能力,进而对BiLSTM网络的参数进行优化。最后,利用优化后的BiLSTM网络实现对故障的识别和分类。通过选取多组数据集进行验证,结果表明,基于SSAE-IARO-BiLSTM故障诊断方法能够准确地对故障进行识别和分类,且诊断准确率可达98%以上。 展开更多
关键词 故障诊断 人工兔算法(IARO) 双向长短时记忆网络(BiLSTM) 栈式稀疏自编码器(SSAE)
下载PDF
基于深度堆栈网络的心电信号识别
10
作者 张锐 王茹 +1 位作者 黄俊 曾鑫 《哈尔滨理工大学学报》 CAS 北大核心 2021年第3期108-114,共7页
传统的心电信号识别算法依靠心电专家参与特征识别,费时费力,诊断成本高,心电信号形态复杂多样导致识别准确率低、适应性差。为解决上述问题,将栈式稀疏自编码器(SSAE,Stacked Sparse Autoencoder),与Softmax分类器相结合形成深度堆栈网... 传统的心电信号识别算法依靠心电专家参与特征识别,费时费力,诊断成本高,心电信号形态复杂多样导致识别准确率低、适应性差。为解决上述问题,将栈式稀疏自编码器(SSAE,Stacked Sparse Autoencoder),与Softmax分类器相结合形成深度堆栈网络(DSN,Deep Stacked Network)完成对心电信号的自动识别。通过3个稀疏自编码器堆叠的方式完成心电信号特征提取,逐层刻画心电信号的高维特征,由Softmax分类器完成心电信号识别。详细评估了深度堆栈网络的模型特性,确定了该网络模型的超参数,训练集样本和测试集样本源于MIT-BIH数据库。实验结果表明采用本文所提方法对心电信号进行识别,总识别率达到99.69%,验证了所提方法的有效性。 展开更多
关键词 栈式稀疏自编码器 特征提取 心电信号识别 稀疏参数
下载PDF
基于混合深度神经网络的异常检测方法
11
作者 邱鹏 刘汉忠 黄晓华 《实验室研究与探索》 CAS 北大核心 2023年第9期73-77,共5页
为提高监控与数据采集中的异常检测精度和效率,对数据进行归一化特征标准、拆分、均衡以及独热编码等预处理,构建栈式稀疏去噪自编码器深度神经网络模型作为混合深度神经网络,重建网络模型中自编码器的输入特征值,进行无监督特征学习,... 为提高监控与数据采集中的异常检测精度和效率,对数据进行归一化特征标准、拆分、均衡以及独热编码等预处理,构建栈式稀疏去噪自编码器深度神经网络模型作为混合深度神经网络,重建网络模型中自编码器的输入特征值,进行无监督特征学习,再添加监督分类器。通过训练异常检测引擎模块来完成异常检测。仿真结果表明,在检测异常攻击特征上,无论是精度与召回率协调值还是假阳性率相较于其他检测算法都更有优势;采用分布式训练模型提高了异常检测效率,证明本方法可行且有效。 展开更多
关键词 混合深度神经网络 无监督特征学习 稀疏去噪自编码器 监督分类器 异常检测
下载PDF
融合候选区域提取与SSAE深度特征学习的心脏MR图像左心室检测 被引量:4
12
作者 王旭初 牛彦敏 +2 位作者 赵广军 谭立文 张绍祥 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2018年第3期424-435,共12页
左心室检测在计算机辅助心脏MR图像诊断方面具有重要价值,针对由于成像质量、部分容积效应、目标复杂多变等因素影响,导致左心室自动检测准确度较低的问题,提出一种融合候选区域提取与栈式稀疏自编码器(SSAE)深度特征学习的心脏MR图像... 左心室检测在计算机辅助心脏MR图像诊断方面具有重要价值,针对由于成像质量、部分容积效应、目标复杂多变等因素影响,导致左心室自动检测准确度较低的问题,提出一种融合候选区域提取与栈式稀疏自编码器(SSAE)深度特征学习的心脏MR图像左心室检测方法.在候选区域提取阶段,先用超像素算法产生初始区域,然后对SSAE学习到的深度特征采用层次聚类算法生成候选区域;在检测阶段,先使用SSAE提取候选区域的深度特征,然后训练SVM分类器对候选区域进行分类,并使用难分负样本挖掘算法对模型进行调节.对心脏图谱数据集左心室目标检测的实验结果表明,相对于手工特征及基于候选区域等方法,该方法取得了有竞争力的检测精度. 展开更多
关键词 栈式稀疏自编码器 左心室目标检测 深度特征学习 心脏MR图像 SVM分类器
下载PDF
基于Focal损失SSDAE的变压器故障诊断方法 被引量:11
13
作者 武天府 刘征 +2 位作者 王志强 李劲松 李国锋 《电力工程技术》 北大核心 2021年第6期18-24,共7页
研究变压器的故障诊断对电力系统安全稳定运行具有重大现实意义。以油中溶解气体特征为输入的传统变压器故障诊断方法在处理样本不平衡数据时具有较大的局限性。针对这一问题,文中提出一种基于Focal损失栈式稀疏降噪自编码器(SSDAE)的... 研究变压器的故障诊断对电力系统安全稳定运行具有重大现实意义。以油中溶解气体特征为输入的传统变压器故障诊断方法在处理样本不平衡数据时具有较大的局限性。针对这一问题,文中提出一种基于Focal损失栈式稀疏降噪自编码器(SSDAE)的变压器故障诊断方法。该方法通过类别权重确定超参数,并在原始输入中加入高斯白噪声,有利于自编码器充分提取有效特征,进而得到有效的深度特征提取模型;采用Focal损失函数对模型进行优化,并利用Softmax分类器输出诊断结果。案例分析结果表明,与传统三比值法、反向传播神经网络(BPNN)和支持向量机(SVM)法等变压器故障诊断方法相比,文中方法可进一步提升诊断准确率。 展开更多
关键词 变压器 故障诊断 稀疏降噪自编码器(SSDAE) Softmax分类器 Focal损失 类别权重
下载PDF
基于边缘云框架的高效安全人脸表情识别 被引量:1
14
作者 张娴静 褚含冰 刘鑫 《计算机工程与设计》 北大核心 2021年第5期1472-1478,共7页
针对物联网环境下数据量大且人脸表情识别率低的问题,提出基于边缘云框架的高效安全人脸表情识别方法。物联网设备通过多秘密共享技术获取用户信息,并分发到不同的边缘云。边缘云利用语谱图和局部二值模式的方法提取语音特征,采用差值... 针对物联网环境下数据量大且人脸表情识别率低的问题,提出基于边缘云框架的高效安全人脸表情识别方法。物联网设备通过多秘密共享技术获取用户信息,并分发到不同的边缘云。边缘云利用语谱图和局部二值模式的方法提取语音特征,采用差值中心对称局部二值模式获得图像特征,将特征送至核心云。基于栈式稀疏去噪自编码器融合语音和图像特征,实现人脸表情的识别,并在RML和eNTERFACE’05数据库上进行实验。实验结果表明,该方法的识别准确率明显高于对比方法,抵御网络攻击的能力较强。 展开更多
关键词 边缘云框架 多秘密共享技术 差值中心对称局部二值模 人脸表情识别 稀疏去噪自编码器
下载PDF
基于SSAE的地震属性融合技术
15
作者 周单 钟晗 《地球物理学进展》 CSCD 北大核心 2024年第2期647-660,共14页
地震属性是地下介质的综合反映,与地质目标往往不具备一一对应的关系,这就导致单一属性在解释时不可避免的存在多解性,为解决这一难题,地震属性融合技术应用而生.传统的基于线性变换的主成分分析(Principal Component Analysis,PCA)方... 地震属性是地下介质的综合反映,与地质目标往往不具备一一对应的关系,这就导致单一属性在解释时不可避免的存在多解性,为解决这一难题,地震属性融合技术应用而生.传统的基于线性变换的主成分分析(Principal Component Analysis,PCA)方法是一种较为有效的地震属性融合技术,但它在面对复杂非线性的地震属性融合问题时,不能有效提取其中的非线性特征.因此,本文提出了基于栈式稀疏自编码器(Stack Sparse Auto Encoders,SSAE)的非线性地震属性融合技术.SSAE是一种深度学习网络,能够充分地挖掘数据的非线性特征,通过不断学习,自适应地融合各种属性中蕴含的有效信息.本文首先介绍了地震属性的优选、标准化处理方法,然后阐述了基于PCA、SSAE的属性融合方法的基本原理;最后通过两种方法在两个经典模型、一个正演模型及三个应用实例的对比分析,表明SSAE对于非线性数据拥有更好的融合效果,且对于多尺度、多属性、宽方位等不同类型的属性数据也具备普适性.SSAE融合属性集合了多种属性的特征信息,有效降低了解释的多解性,提升了储层预测的精度,可为同类型工区提供借鉴. 展开更多
关键词 多解性 非线性 地震属性融合 主成分分析 栈式稀疏自编码器
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部