针对现有的显著性检测算法检测目标类型单一、通用性差的问题,提出一种基于无监督栈式降噪自编码网络的显著性检测算法.该算法利用无监督栈式降噪自编码网络(Stacked Denoising Auto Encoder,SDAE)在多个尺度对原始图像进行稀疏重构,将...针对现有的显著性检测算法检测目标类型单一、通用性差的问题,提出一种基于无监督栈式降噪自编码网络的显著性检测算法.该算法利用无监督栈式降噪自编码网络(Stacked Denoising Auto Encoder,SDAE)在多个尺度对原始图像进行稀疏重构,将原始图像与SDAE网络重构图像之间的差作为显著图,二值化后的显著图作为显著性目标检测结果.在SDAE网络训练过程中,将原始图像作为原始数据,网络重构的图像作为观察数据.为了提升网络训练效率,首先利用无监督逐层贪婪方法训练同结构的深度信念网络(Deep Belief Network,DBN),将训练得到的DBN网络参数设为SDAE网络的初始参数,再计算原始数据与观察数据之间的互信息作为网络收敛代价,利用反向传播进行网络参数微调.实验表明,该网络模型可以完成多类型目标的显著性检测,具有通用性好,准确度高等优点.展开更多
深度学习技术已经广泛应用到大数据处理中,并在很多方面获得了可观的成绩.其中,自编码神经网络作为一种特征降维算法已被广大专家学者所应用.本文主要讨论一种改进的自动编码器——栈式降噪自编码神经网络(The Stacked Denoising Auto E...深度学习技术已经广泛应用到大数据处理中,并在很多方面获得了可观的成绩.其中,自编码神经网络作为一种特征降维算法已被广大专家学者所应用.本文主要讨论一种改进的自动编码器——栈式降噪自编码神经网络(The Stacked Denoising Auto Encoder,SDAE),该算法使学习到的特征更加具有鲁棒性.并研究了该算法基于Re LU激活函数的中文短文本分类.与KNN,SVM,BP对比,无论召回率还是准确率,SDAE均优于KNN、BP、SVM.展开更多