The possibility of multiplicity in an isothermal continuous mixed suspension-mixed product removalcrystallizer is explored using the bifurcation theory. A process involving agglomeration controlled precipitationis con...The possibility of multiplicity in an isothermal continuous mixed suspension-mixed product removalcrystallizer is explored using the bifurcation theory. A process involving agglomeration controlled precipitationis considered in which secondary nucleation occurs simultaneously with primary nucleation. The determinantequations for the existence of multiple steady states are developed and the multiplicity boundaries dependent on thephysical and kinetic properties and operational parameters of the process are obtained by resolving these determinantequations. The number of steady states in the precipitator for various multiplicity regions is determined and thelinear stability of these steady states is analyzed by using the Routh criterion.展开更多
The accuracy of nucleation parameter is a critical factor in the simulation of microstructural evolution during dynamic recrystallization(DRX).Based on the flow stress curve under hot deformation conditions,a new appr...The accuracy of nucleation parameter is a critical factor in the simulation of microstructural evolution during dynamic recrystallization(DRX).Based on the flow stress curve under hot deformation conditions,a new approach is proposed to identify the nucleation parameter during DRX.In this approach,a cellular automaton(CA) model is applied to quantitatively simulate the microstructural evolution and flow stress during hot deformation;and adaptive response surface method(ARSM) is applied as optimization model to provide input parameters to CA model and evaluate the outputs of the latter.By taking an oxygen-free high-conductivity(OFHC) copper as an example,the good agreement between the simulation results and the experimental observations demonstrates the availability of the proposed method.展开更多
One of the major challenges in reservoir characterization is to estimate the effective porosity and the permeability of the reservoir due to reservoir heterogeneity. Often, the vertical and the horizontal permeabiliti...One of the major challenges in reservoir characterization is to estimate the effective porosity and the permeability of the reservoir due to reservoir heterogeneity. Often, the vertical and the horizontal permeabilities are not considered separately in 3D geo-cellular models and in the reservoir simulations. Conventional reservoir modeling extrapolates all of the small-scale data to full-field scale data without considering the impact of the small-scale geological details, and therefore carries forward inherent errors into the reservoir predictions as a consequence of ignoring the reservoir heterogeneity. Most reservoirs are geologically complex and heterogeneous and that greatly influences reservoir performance. A case study is taken from a CHOPS (cold heavy oil production with sands) field. An innovative method of reservoir heterogeneity estimation has been introduced to illustrate the complex reservoir heterogeneity honouring all of the small-scale geological details in the 3D geological model. This detailed near-wellbore modeling through a synthetic core can provide the realistic quantitative volumetric assumption of the production prediction and improve the EOR (enhanced oil recovery) processes.展开更多
The study on greenhouse gas inventory in urban China lags far behind the global level. The important factor that curbs the carbon inventory of cities of China is inventory methodology and scope. Given the insufficienc...The study on greenhouse gas inventory in urban China lags far behind the global level. The important factor that curbs the carbon inventory of cities of China is inventory methodology and scope. Given the insufficiency of Chinese cities carbon inventory, a system and accounting model (scopel+ scope2) as well as principles and boundaries were proposed for China. The carbon emissions in scopel and scopel+ scope2 were calculated in Chinese prefecture-level cities. The EDGAR dataset was used for the calculation of scopel carbon emissions in cities in China and the level of uncertainty was analyzed as well. The results showed that the direct carbon emission of cities in China was about 31.65% of China total emissions. The scopel+ scope2 carbon emissions in cities of China were calculated based on the GIS and RS model. The results showed that the sum of direct (scopel) and indirect (scope2) carbon emissions of cities in China accounted for 38.80% of total China carbon emissions.展开更多
An integrated approach is proposed to predict the chromatographic retention time of oligonucleotides based on quantitative structure-retention relationships (QSRR) models. First, the primary base sequences of oligon...An integrated approach is proposed to predict the chromatographic retention time of oligonucleotides based on quantitative structure-retention relationships (QSRR) models. First, the primary base sequences of oligonucleotides are translated into vectors based on scores of generalized base properties (SGBP), involving physicochemical, quantum chemical, topological, spatial structural properties, etc.; thereafter, the sequence data are transformed into a uniform matrix by auto cross covariance (ACC). ACC accounts for the interactions between bases at a certain distance apart in an oligonucleotide sequence; hence, this method adequately takes the neighboring effect into account. Then, a genetic algorithm is used to select the variables related to chromatographic retention behavior of oligonuclcotides. Finally, a support vector machine is used to develop QSRR models to predict chromatographic retention behavior. The whole dataset is divided into pairs of training sets and test sets with different proportions; as a result, it has been found that the QSRR models using more than 26 training samples have an appropriate external power, and can accurately represent the relationship between the features of sequences and structures, and the retention times. The results indicate that the SGBP-ACC approach is a useful structural representation method in QSRR of oligonucleotides due to its many advantages such as plentiful structural information, easy manipulation and high characterization competence. Moreover, the method can further be applied to predict chromatographic retention behavior of oligonucleotides.展开更多
文摘The possibility of multiplicity in an isothermal continuous mixed suspension-mixed product removalcrystallizer is explored using the bifurcation theory. A process involving agglomeration controlled precipitationis considered in which secondary nucleation occurs simultaneously with primary nucleation. The determinantequations for the existence of multiple steady states are developed and the multiplicity boundaries dependent on thephysical and kinetic properties and operational parameters of the process are obtained by resolving these determinantequations. The number of steady states in the precipitator for various multiplicity regions is determined and thelinear stability of these steady states is analyzed by using the Routh criterion.
基金Project(2006CB705401) supported by the National Basic Research Program of China
文摘The accuracy of nucleation parameter is a critical factor in the simulation of microstructural evolution during dynamic recrystallization(DRX).Based on the flow stress curve under hot deformation conditions,a new approach is proposed to identify the nucleation parameter during DRX.In this approach,a cellular automaton(CA) model is applied to quantitatively simulate the microstructural evolution and flow stress during hot deformation;and adaptive response surface method(ARSM) is applied as optimization model to provide input parameters to CA model and evaluate the outputs of the latter.By taking an oxygen-free high-conductivity(OFHC) copper as an example,the good agreement between the simulation results and the experimental observations demonstrates the availability of the proposed method.
文摘One of the major challenges in reservoir characterization is to estimate the effective porosity and the permeability of the reservoir due to reservoir heterogeneity. Often, the vertical and the horizontal permeabilities are not considered separately in 3D geo-cellular models and in the reservoir simulations. Conventional reservoir modeling extrapolates all of the small-scale data to full-field scale data without considering the impact of the small-scale geological details, and therefore carries forward inherent errors into the reservoir predictions as a consequence of ignoring the reservoir heterogeneity. Most reservoirs are geologically complex and heterogeneous and that greatly influences reservoir performance. A case study is taken from a CHOPS (cold heavy oil production with sands) field. An innovative method of reservoir heterogeneity estimation has been introduced to illustrate the complex reservoir heterogeneity honouring all of the small-scale geological details in the 3D geological model. This detailed near-wellbore modeling through a synthetic core can provide the realistic quantitative volumetric assumption of the production prediction and improve the EOR (enhanced oil recovery) processes.
文摘The study on greenhouse gas inventory in urban China lags far behind the global level. The important factor that curbs the carbon inventory of cities of China is inventory methodology and scope. Given the insufficiency of Chinese cities carbon inventory, a system and accounting model (scopel+ scope2) as well as principles and boundaries were proposed for China. The carbon emissions in scopel and scopel+ scope2 were calculated in Chinese prefecture-level cities. The EDGAR dataset was used for the calculation of scopel carbon emissions in cities in China and the level of uncertainty was analyzed as well. The results showed that the direct carbon emission of cities in China was about 31.65% of China total emissions. The scopel+ scope2 carbon emissions in cities of China were calculated based on the GIS and RS model. The results showed that the sum of direct (scopel) and indirect (scope2) carbon emissions of cities in China accounted for 38.80% of total China carbon emissions.
基金supported by the National Natural Science Foundation of China (10901169)National 111 Programme of Introducing Talents of Discipline to Universities (0507111106)+2 种基金Innovation Ability Training Foundation of Chongqing University (CDCX008)Innovative Group Program for Graduates of Chongqing University,ScienceInnovation Fund (200711C1A0010260)
文摘An integrated approach is proposed to predict the chromatographic retention time of oligonucleotides based on quantitative structure-retention relationships (QSRR) models. First, the primary base sequences of oligonucleotides are translated into vectors based on scores of generalized base properties (SGBP), involving physicochemical, quantum chemical, topological, spatial structural properties, etc.; thereafter, the sequence data are transformed into a uniform matrix by auto cross covariance (ACC). ACC accounts for the interactions between bases at a certain distance apart in an oligonucleotide sequence; hence, this method adequately takes the neighboring effect into account. Then, a genetic algorithm is used to select the variables related to chromatographic retention behavior of oligonuclcotides. Finally, a support vector machine is used to develop QSRR models to predict chromatographic retention behavior. The whole dataset is divided into pairs of training sets and test sets with different proportions; as a result, it has been found that the QSRR models using more than 26 training samples have an appropriate external power, and can accurately represent the relationship between the features of sequences and structures, and the retention times. The results indicate that the SGBP-ACC approach is a useful structural representation method in QSRR of oligonucleotides due to its many advantages such as plentiful structural information, easy manipulation and high characterization competence. Moreover, the method can further be applied to predict chromatographic retention behavior of oligonucleotides.