针对测试训练期间变化的信道环境,提出一种新的滑动窗近似线性依赖稀疏的核递推最小二乘算法。该算法核矩阵的尺寸只与滑动窗口宽度有关。选择字典表中最近的L个数据测试近似线性依赖准则,减少系统开销并降低系统实现的复杂度,克服ALD-K...针对测试训练期间变化的信道环境,提出一种新的滑动窗近似线性依赖稀疏的核递推最小二乘算法。该算法核矩阵的尺寸只与滑动窗口宽度有关。选择字典表中最近的L个数据测试近似线性依赖准则,减少系统开销并降低系统实现的复杂度,克服ALD-KRLS算法核矩阵随字典表线性增长的缺陷。当训练序列的自相关矩阵特征根谱大于40时,较SW-KRLS均方误差性能有近3 d B的改善,且具有更小的稳态失调特性。仿真结果表明,与ALD-KRLS算法和KRLS算法相比,该算法具有更快的收敛速度和较好的均方误差性能。展开更多
针对动态室内环境的变化及时变的接收信号强度(Received signal strength,RSS)对定位精度的影响,提出了一类基于核自适应滤波算法的农业无线传感器网络室内定位方法。核自适应滤波算法具体包括量化核最小均方(Quantized kernel least me...针对动态室内环境的变化及时变的接收信号强度(Received signal strength,RSS)对定位精度的影响,提出了一类基于核自适应滤波算法的农业无线传感器网络室内定位方法。核自适应滤波算法具体包括量化核最小均方(Quantized kernel least mean square,QKLMS)算法及固定预算(Fixed-budget,FB)核递推最小二乘(Kernel recursive least-squares,KRLS)算法。QKLMS算法基于一种简单在线矢量量化方法替代稀疏化,抑制核自适应滤波中径向基函数结构的增长。FB-KRLS算法是一种固定内存预算的在线学习方法,与以往的"滑窗"技术不同,每次时间更新时并不"修剪"最旧的数据,而是旨在"修剪"最无用的数据,从而抑制核矩阵的不断增长。通过构建RSS指纹信息与物理位置之间的非线性映射关系,核自适应滤波算法实现WSN的室内定位,将所提出的算法应用于仿真与物理环境下的不同实例中,在同等条件下,还与其他核学习算法、极限学习机(Extreme learning machine,ELM)等定位算法进行比较。仿真实验中2种算法在3种情形下的平均定位误差分别为0.746、0.443 m,物理实验中2种算法在2种情形下的平均定位误差分别为0.547、0.282 m。实验结果表明,所提出的核自适应滤波算法均能提高定位精度,其在线学习能力使得所提出的定位算法能自适应环境动态的变化。展开更多
文摘针对测试训练期间变化的信道环境,提出一种新的滑动窗近似线性依赖稀疏的核递推最小二乘算法。该算法核矩阵的尺寸只与滑动窗口宽度有关。选择字典表中最近的L个数据测试近似线性依赖准则,减少系统开销并降低系统实现的复杂度,克服ALD-KRLS算法核矩阵随字典表线性增长的缺陷。当训练序列的自相关矩阵特征根谱大于40时,较SW-KRLS均方误差性能有近3 d B的改善,且具有更小的稳态失调特性。仿真结果表明,与ALD-KRLS算法和KRLS算法相比,该算法具有更快的收敛速度和较好的均方误差性能。
文摘针对动态室内环境的变化及时变的接收信号强度(Received signal strength,RSS)对定位精度的影响,提出了一类基于核自适应滤波算法的农业无线传感器网络室内定位方法。核自适应滤波算法具体包括量化核最小均方(Quantized kernel least mean square,QKLMS)算法及固定预算(Fixed-budget,FB)核递推最小二乘(Kernel recursive least-squares,KRLS)算法。QKLMS算法基于一种简单在线矢量量化方法替代稀疏化,抑制核自适应滤波中径向基函数结构的增长。FB-KRLS算法是一种固定内存预算的在线学习方法,与以往的"滑窗"技术不同,每次时间更新时并不"修剪"最旧的数据,而是旨在"修剪"最无用的数据,从而抑制核矩阵的不断增长。通过构建RSS指纹信息与物理位置之间的非线性映射关系,核自适应滤波算法实现WSN的室内定位,将所提出的算法应用于仿真与物理环境下的不同实例中,在同等条件下,还与其他核学习算法、极限学习机(Extreme learning machine,ELM)等定位算法进行比较。仿真实验中2种算法在3种情形下的平均定位误差分别为0.746、0.443 m,物理实验中2种算法在2种情形下的平均定位误差分别为0.547、0.282 m。实验结果表明,所提出的核自适应滤波算法均能提高定位精度,其在线学习能力使得所提出的定位算法能自适应环境动态的变化。