Based on the analysis of impedance tensor data, tipper data, and the conjugate gradient algorithm, we develop a three-dimensional (3D) conjugate gradient algorithm for inverting magnetotelluric full information data...Based on the analysis of impedance tensor data, tipper data, and the conjugate gradient algorithm, we develop a three-dimensional (3D) conjugate gradient algorithm for inverting magnetotelluric full information data determined from five electric and magnetic field components and discuss the method to use the full information data for quantitative interpretation of 3D inversion results. Results from the 3D inversion of synthetic data indicate that the results from inverting full information data which combine the impedance tensor and tipper data are better than results from inverting only the impedance tensor data (or tipper data) in improving resolution and reliability. The synthetic examples also demonstrate the validity and stability of this 3D inversion algorithm.展开更多
基金supported by the National Hi-tech Research and Development Program of China(863Program)(No.2007AA09Z310) National Natural Science Foundation of China(Grant No.40774029 40374024)+1 种基金 the Fundamental Research Funds for the Central Universities(Grant No.2010ZY53) the Program for New Century Excellent Talents in University(NCET)
文摘Based on the analysis of impedance tensor data, tipper data, and the conjugate gradient algorithm, we develop a three-dimensional (3D) conjugate gradient algorithm for inverting magnetotelluric full information data determined from five electric and magnetic field components and discuss the method to use the full information data for quantitative interpretation of 3D inversion results. Results from the 3D inversion of synthetic data indicate that the results from inverting full information data which combine the impedance tensor and tipper data are better than results from inverting only the impedance tensor data (or tipper data) in improving resolution and reliability. The synthetic examples also demonstrate the validity and stability of this 3D inversion algorithm.