目前,关于特征值的研究主要集中在特征值互补、特征值估计和运用算法计算特征值等方向。受张量绝对值方程Axm−1−| x |=b启示,本文考虑一类新形式的特征值问题,并提出梯度神经网络方法求解新形式张量特征值和特征向量。数值实验表明了梯...目前,关于特征值的研究主要集中在特征值互补、特征值估计和运用算法计算特征值等方向。受张量绝对值方程Axm−1−| x |=b启示,本文考虑一类新形式的特征值问题,并提出梯度神经网络方法求解新形式张量特征值和特征向量。数值实验表明了梯度神经网络方法求解该问题的可行性和有效性。At present, research on eigenvalues mainly focuses on complementary eigenvalues, eigenvalue estimation, and the application of algorithms to calculate eigenvalues. Inspired by the tensor absolute value equation Axm−1−| x |=b, this paper considers a new form of eigenvalue problem and proposes a gradient neural network method to solve the eigenvalues and eigenvectors of the new form tensor. Numerical experiments have shown the feasibility and effectiveness of using gradient neural network methods to solve this problem.展开更多
提出了一种基于有效性分析的自组织模糊神经网络(self-organizingfuzzyneural network based on effectiveness analysis, SOEFNN)建模方法。首先,提出了一种针对模糊规则的有效性评价指标,利用样本与规则层输出之间的映射关系进行网络...提出了一种基于有效性分析的自组织模糊神经网络(self-organizingfuzzyneural network based on effectiveness analysis, SOEFNN)建模方法。首先,提出了一种针对模糊规则的有效性评价指标,利用样本与规则层输出之间的映射关系进行网络模型的有效性分析,通过累积触发的方式实现相应模糊规则的增加或删减,使网络模型在能够处理复杂非线性问题的同时降低其冗余性,使模型更为紧凑。采用梯度下降算法对网络模型进行训练。然后,对所提出的SOEFNN模型进行非线性系统仿真实验和污水处理过程中的出水生化需氧量预测建模,并与其他自组织模糊神经网络模型进行对比。仿真结果表明,所提出的SOEFNN模型能够很好地实现结构和参数的自适应调整,并且具有较好的逼近能力。展开更多
文摘目前,关于特征值的研究主要集中在特征值互补、特征值估计和运用算法计算特征值等方向。受张量绝对值方程Axm−1−| x |=b启示,本文考虑一类新形式的特征值问题,并提出梯度神经网络方法求解新形式张量特征值和特征向量。数值实验表明了梯度神经网络方法求解该问题的可行性和有效性。At present, research on eigenvalues mainly focuses on complementary eigenvalues, eigenvalue estimation, and the application of algorithms to calculate eigenvalues. Inspired by the tensor absolute value equation Axm−1−| x |=b, this paper considers a new form of eigenvalue problem and proposes a gradient neural network method to solve the eigenvalues and eigenvectors of the new form tensor. Numerical experiments have shown the feasibility and effectiveness of using gradient neural network methods to solve this problem.
文摘提出了一种基于有效性分析的自组织模糊神经网络(self-organizingfuzzyneural network based on effectiveness analysis, SOEFNN)建模方法。首先,提出了一种针对模糊规则的有效性评价指标,利用样本与规则层输出之间的映射关系进行网络模型的有效性分析,通过累积触发的方式实现相应模糊规则的增加或删减,使网络模型在能够处理复杂非线性问题的同时降低其冗余性,使模型更为紧凑。采用梯度下降算法对网络模型进行训练。然后,对所提出的SOEFNN模型进行非线性系统仿真实验和污水处理过程中的出水生化需氧量预测建模,并与其他自组织模糊神经网络模型进行对比。仿真结果表明,所提出的SOEFNN模型能够很好地实现结构和参数的自适应调整,并且具有较好的逼近能力。