期刊文献+
共找到16,145篇文章
< 1 2 250 >
每页显示 20 50 100
一种提高二相编码雷达检测目标动态范围的方法 被引量:5
1
作者 顾红 苏卫民 +1 位作者 付耀先 刘国岁 《电子学报》 EI CAS CSCD 北大核心 2002年第12期1752-1754,共3页
在相位编码雷达进行各目标回波信号功率相差较大的多目标或隐身目标检测时,会存在隐身目标和小功率信号淹没在大功率信号距离旁瓣中的情况.本文提出了一种逐次消去回波中大功率信号的方法来去除大功率信号的距离旁瓣,检测小功率信号,从... 在相位编码雷达进行各目标回波信号功率相差较大的多目标或隐身目标检测时,会存在隐身目标和小功率信号淹没在大功率信号距离旁瓣中的情况.本文提出了一种逐次消去回波中大功率信号的方法来去除大功率信号的距离旁瓣,检测小功率信号,从而提高雷达系统观察目标的动态范围至80dB以上.仿真研究和雷达实验表明该方法是有效可行的. 展开更多
关键词 雷达 检测目标 相位编码 旁瓣抑制 动态范围
下载PDF
均匀分布地杂波中检测目标的统计分析 被引量:1
2
作者 杨英科 李宏 +1 位作者 张伟 左少平 《雷达科学与技术》 2004年第1期17-19,28,共4页
简要叙述了常规雷达在高斯噪声环境下检测目标时的发现概率、虚警概率和信噪比的关系 ,并在此基础上 ,结合目前很多雷达采用杂波单元平均法进行目标检测的情况 ,分析了均匀分布杂波的统计特性 ,得出了在杂波分量远大于噪声分量的检测过... 简要叙述了常规雷达在高斯噪声环境下检测目标时的发现概率、虚警概率和信噪比的关系 ,并在此基础上 ,结合目前很多雷达采用杂波单元平均法进行目标检测的情况 ,分析了均匀分布杂波的统计特性 ,得出了在杂波分量远大于噪声分量的检测过程中发现概率、虚警概率和信杂比三者的关系。对于常规雷达的检测理论 。 展开更多
关键词 雷达 高斯噪声 发现概率 虚警概率 信噪比 均匀分布 目标检测
下载PDF
构建乳与乳制品相关检测目标物的国际标准数据库的应用程序
3
作者 王紫菲 江兆尧 肖晶 《乳业科学与技术》 2016年第2期34-39,共6页
为了加强对国际食品安全标准的跟踪研究,增强标准工作的技术储备,同时考虑到乳与乳制品在食品安全领域的较高关注度,本研究建立以国际乳与乳制品标准中重要检测目标物为检索路径的数据库类应用程序,为食品安全标准工作信息化、网络化提... 为了加强对国际食品安全标准的跟踪研究,增强标准工作的技术储备,同时考虑到乳与乳制品在食品安全领域的较高关注度,本研究建立以国际乳与乳制品标准中重要检测目标物为检索路径的数据库类应用程序,为食品安全标准工作信息化、网络化提供了技术支持,为充分达成资源共享提供了技术平台,为保障人民身体健康、生命安全提供了有力保障。 展开更多
关键词 数据库 食品安全 检测目标 国际标准
下载PDF
复杂背景下基于YOLOv7-tiny的图像目标检测算法 被引量:3
4
作者 薛珊 安宏宇 +1 位作者 吕琼莹 曹国华 《红外与激光工程》 EI CSCD 北大核心 2024年第1期261-272,共12页
“黑飞”无人机一旦带有炸弹等物品,会对人们带来威胁。对在公园、游乐场、学校等复杂背景下“黑飞”的无人机进行目标检测是十分必要的。前沿算法YOLOv7-tiny属于轻量级网络,具有更小的网络结构和参数,更适合检测小目标,但在识别小目... “黑飞”无人机一旦带有炸弹等物品,会对人们带来威胁。对在公园、游乐场、学校等复杂背景下“黑飞”的无人机进行目标检测是十分必要的。前沿算法YOLOv7-tiny属于轻量级网络,具有更小的网络结构和参数,更适合检测小目标,但在识别小目标无人机时出现特征提取能力弱、回归损失大、检测精度低的问题;针对此问题,提出了一种基于YOLOv7-tiny改进的无人机图像目标检测算法YOLOv7-drone。首先,建立无人机图像数据集;其次,设计一种新的注意力机制模块SMSE嵌入到特征提取网络中,增强对复杂背景下无人机目标的关注度;然后,在主干网络中融入RFB结构,扩大特征层的感受野,丰富特征信息以增强特征提取的鲁棒性;然后,改进网络中的特征融合机制,通过新增小目标检测层,增加对小尺度目标的检测精度;然后,改变损失函数提高模型的收敛速度,减少损失以增强模型的鲁棒性;最后,引入可变形卷积(Deformable convolution, DCN),更好的根据目标本身形状进行特征提取,提升了检测精度。在PASCAL VOC公共数据集上进行对比实验,结果表明改进后的算法YOLO7-drone相比于YOLOv7-tiny,平均精度(map@0.5)提升了6%;在自制无人机数据集上进行实验,结果表明YOLOv7-drone与原算法相比,平均精度(map@0.5)提高了6.1%,并且检测速度为72帧/s;与YOLOv5l、YOLOv7目标检测算法进行对比实验,结果表明改进后的算法在平均精度(map@0.5)上分别高于对比算法4%、3.1%,验证了文中算法的可行性。 展开更多
关键词 目标检测 复杂背景 注意力机制 目标检测
原文传递
一种利用目标分类检测目标的方法
5
作者 潘震中 《现代电子》 1993年第3期28-34,共7页
关键词 目标检测 目标分类 融合 发射机
下载PDF
边缘信息增强的显著性目标检测网络 被引量:2
6
作者 赵卫东 王辉 柳先辉 《同济大学学报(自然科学版)》 EI CAS CSCD 北大核心 2024年第2期293-302,共10页
针对显著性目标检测任务中识别结果边缘模糊的问题,提出了一种能够充分利用边缘信息增强边缘像素置信度的新模型。该网络主要有两个创新点:设计三重注意力模块,利用预测图的特点直接生成前景、背景和边缘注意力,并且生成注意力权重的过... 针对显著性目标检测任务中识别结果边缘模糊的问题,提出了一种能够充分利用边缘信息增强边缘像素置信度的新模型。该网络主要有两个创新点:设计三重注意力模块,利用预测图的特点直接生成前景、背景和边缘注意力,并且生成注意力权重的过程不增加任何参数;设计边缘预测模块,在分辨率较高的网络浅层进行有监督的边缘预测,并与网络深层的显著图预测融合,细化了边缘。在6种常用公开数据集上用定性和定量的方法评估了该模型,并且与其他模型进行充分对比,证明设计的新模型能够取得最优的效果。此外,该模型参数量为30.28 M,可以在GTX 1080 Ti显卡上达到31帧·s^(-1)的预测速度。 展开更多
关键词 显著性目标检测 注意力机制 边缘检测 深度卷积神经网络
下载PDF
基于LMIENet图像增强的矿井下低光环境目标检测方法 被引量:1
7
作者 田子建 阳康 +1 位作者 吴佳奇 陈伟 《煤炭科学技术》 EI CAS CSCD 北大核心 2024年第5期222-235,共14页
煤矿井下工作环境复杂,存在人造光源亮度低、粉尘多和水气密度大等不利因素,导致现有的目标检测算法在应用到煤矿井下时,存在提取特征困难、目标识别和定位精度低等问题。提出一种煤矿井下低照度环境目标检测算法,由矿井低光图像增强模... 煤矿井下工作环境复杂,存在人造光源亮度低、粉尘多和水气密度大等不利因素,导致现有的目标检测算法在应用到煤矿井下时,存在提取特征困难、目标识别和定位精度低等问题。提出一种煤矿井下低照度环境目标检测算法,由矿井低光图像增强模块LMIENet和目标检测模块组成,使用图像增强模块对原始图像进行画质提升,恢复各类图像信息,再使用目标检测网络对增强图像进行特定目标检测,有效提高检测的精确度。在图像增强模块中,改进Zero-DCE算法设计轻量级增强参数预测网络,计算像素级增强参数矩阵,用于低光照图像的亮度调整和画质增强,该网络通过设计的非参考损失函数隐性衡量图像的增强效果,引导网络进行无监督学习,使网络能够不依赖配对数据集对原始图像进行自适应的画质增强。目标检测模块中,采用YOLO v8n目标检测模型,其轻量化的模型尺寸和高灵活性可避免模型整体复杂度过高;采用Focal-EIoU Loss改进回归损失函数,有效加速模型收敛并提升模型检测精度。实验结果显示:与经典目标检测算法Faster R–CNN,SSD,RetinaNet,FCOS等相比,提出算法在自建矿井人员数据集上表现出色,低光照环境下目标检测的mAP@0.5达到98.0%,mAP@0.5∶0.95达64.8%,在实验环境中单帧图像推理时间仅11 ms,优于其他对比方法,证明提出算法能够有效实现在煤矿井下低照度复杂环境下的目标检测,且耗时短、计算效率高。 展开更多
关键词 低照度 矿井目标检测 图像增强 无监督学习
下载PDF
基于改进YOLOv5s的不同成熟度苹果目标检测方法 被引量:1
8
作者 王勇 陶兆胜 +2 位作者 石鑫宇 伍毅 吴浩 《南京农业大学学报》 CAS CSCD 北大核心 2024年第3期602-611,共10页
[目的]本文旨在解决在自然环境下不同成熟度苹果目标检测精度较低的问题。[方法]提出了一种改进的YOLOv5s模型SODSTR-YOLOv5s(YOLOv5s with small detection layer and omni-dimensional dynamic convolution and swin transformer bloc... [目的]本文旨在解决在自然环境下不同成熟度苹果目标检测精度较低的问题。[方法]提出了一种改进的YOLOv5s模型SODSTR-YOLOv5s(YOLOv5s with small detection layer and omni-dimensional dynamic convolution and swin transformer block),用于不同成熟度苹果检测。首先改进YOLOv5s的多尺度目标检测层,在Prediction中构建检测160×160特征图的检测头,提高小尺寸的不同成熟度苹果的检测精度;其次在Backbone结构中融合Swin Transformer Block,加强同级成熟度的苹果纹理特征融合,弱化纹理特征分布差异带来的消极影响,提高模型泛化能力;最后将Neck结构的Conv模块替换为动态卷积模块ODConv,细化局部特征映射,实现局部苹果细粒度特征的充分提取。基于不同成熟度苹果数据集进行试验,验证改进模型的性能。[结果]改进模型SODSTR-YOLOv5s检测的精确率、召回率、平均精度均值分别为89.1%、95.5%、93.6%,高、中、低成熟度苹果平均精度均值分别为94.1%、93.1%、93.7%,平均检测时间为16 ms,参数量为7.34 M。相比于YOLOv5s模型,改进模型SODSTR-YOLOv5s精确率、召回率、平均精度均值分别提高了3.8%、5.0%、2.9%,参数量和平均检测时间分别增加了0.32 M和5 ms。[结论]改进模型SODSTR-YOLOv5s提升了在自然环境下对不同成熟度苹果的检测能力,能较好地满足实际采摘苹果的检测要求。 展开更多
关键词 苹果 成熟度 目标检测 YOLOv5s 深度学习 自然环境
下载PDF
改进YOLOv7的复杂道路场景目标检测算法 被引量:5
9
作者 杜娟 崔少华 +1 位作者 晋美娟 茹琛 《计算机工程与应用》 CSCD 北大核心 2024年第1期96-103,共8页
虽然基于深度学习的目标检测算法在道路场景中的目标检测方面已经取得了很好的效果,但是对于复杂道路场景中的密集目标,远处的小尺度目标检测精度低,容易出现漏检误检的问题,提出一种改进YOLOv7的复杂道路场景目标检测算法。增加小目标... 虽然基于深度学习的目标检测算法在道路场景中的目标检测方面已经取得了很好的效果,但是对于复杂道路场景中的密集目标,远处的小尺度目标检测精度低,容易出现漏检误检的问题,提出一种改进YOLOv7的复杂道路场景目标检测算法。增加小目标检测层,增加对小目标的特征学习能力;采用K-means++重聚类先验框,使得先验框更贴合目标,增加网络对目标的定位精度;采用WIoU(Wise-IoU)损失函数,增加网络对普通质量锚框的关注度,提高网络对目标的定位能力;在颈部和检测头引入协调坐标卷积(CoordConv),使网络能够更好地感受特征图中的位置信息;提出P-ELAN结构对骨干网络进行轻量化处理,降低算法参数量和运算量。实验结果表明,该改进算法在华为SODA10M数据集下的mAP达到64.8%,比原算法提高2.6个百分点,模型参数量和运算量分别降低12%和7%,达到检测精度和检测速度的平衡。 展开更多
关键词 YOLOv7 道路目标检测 CoordConv K-means++ 轻量化
下载PDF
基于改进YOLOv5s的小目标检测算法 被引量:7
10
作者 贵向泉 秦庆松 孔令旺 《计算机工程与设计》 北大核心 2024年第4期1134-1140,共7页
针对当前主流目标检测算法对图像中远距离小目标产生的漏检、误检等问题,提出一种改进YOLOv5s的小目标检测算法。在模型训练过程中,通过引入Focal-EIOU定位损失函数,加强边界框的定位精度;在骨干网络中,通过添加小目标检测层,提高小目... 针对当前主流目标检测算法对图像中远距离小目标产生的漏检、误检等问题,提出一种改进YOLOv5s的小目标检测算法。在模型训练过程中,通过引入Focal-EIOU定位损失函数,加强边界框的定位精度;在骨干网络中,通过添加小目标检测层,提高小目标的检测精度;在Neck结构中,通过优化上采样算子和添加注意力机制,加强小目标的特征信息。实验结果表明,改进后的算法在VisDrone数据集上与YOLOv5s算法相比,mAP@small提高了3.2%,且检测速度满足实时性的要求,能够很好地应用于小目标检测任务中。 展开更多
关键词 YOLOv5s算法 目标检测 损失函数 上采样算子 骨干网络 注意力机制 特征信息
下载PDF
基于向量叉乘标签分配的遥感图像目标检测算法 被引量:1
11
作者 禹鑫燚 林密 +1 位作者 卢江平 欧林林 《高技术通讯》 CAS 北大核心 2024年第2期132-142,共11页
近年来遥感图像目标检测受到了广泛的关注,主流的遥感图像目标检测器通过预设锚框与真实框之间的交并比(IoU)进行正负样本的划分。为了解决基于IoU的标签分配方法在遥感图像小而密集目标中存在复检和漏检的问题,本文提出了一种基于向量... 近年来遥感图像目标检测受到了广泛的关注,主流的遥感图像目标检测器通过预设锚框与真实框之间的交并比(IoU)进行正负样本的划分。为了解决基于IoU的标签分配方法在遥感图像小而密集目标中存在复检和漏检的问题,本文提出了一种基于向量叉乘标签分配的遥感图像目标检测算法YOLOXR。首先,提出了一种标签粗分配策略,通过向量叉乘的方法判断特征图的像素点是否在旋转目标内或者目标中心点附近的旋转正方形框内,从而确定其是否为候选正样本。其次,为了降低边缘低质量候选正样本对标签分配的影响,提出了旋转中心度量方法,通过向量叉乘判断像素点距离中心点的远近程度进而赋予不同的权重。最后,基于最优传输的方法(sim OTA)选取真实框和样本点的最优匹配对,使得总体代价最小,进而为旋转目标分配合适的标签。此外,为了解决旋转IoU损失不可导以及Smooth L1损失难以权衡旋转框各个参数的问题,通过计算真实框和预测框二维高斯分布的Kullback-Leibler散度(KLD)来替代IoU。在公开的遥感图像目标检测数据DOTA、HRSC 2016和UCAS-AOD上的大量实验表明,所提方法优于目前绝大多数旋转目标检测算法。 展开更多
关键词 遥感图像 目标检测 标签分配 向量叉乘
下载PDF
基于改进YOLOv7的遥感图像小目标检测方法 被引量:1
12
作者 苗茹 岳明 +1 位作者 周珂 杨阳 《计算机工程与应用》 CSCD 北大核心 2024年第10期246-255,共10页
针对遥感图像中小目标数量众多且背景复杂所导致的识别精度低的问题,提出了一种改进的遥感图像小目标检测方法。该方法基于改进的YOLOv7网络模型,将双级路由注意力机制加入至下采样阶段以构建针对小目标的特征提取模块MP-ATT(max poolin... 针对遥感图像中小目标数量众多且背景复杂所导致的识别精度低的问题,提出了一种改进的遥感图像小目标检测方法。该方法基于改进的YOLOv7网络模型,将双级路由注意力机制加入至下采样阶段以构建针对小目标的特征提取模块MP-ATT(max pooling-attention),使得模型更加关注小目标的特征,提高小目标检测精度。为了加强对小目标的细节感知能力,使用DCNv3(deformable convolution network v3)替换骨干网络中的二维卷积,以此构建新的层聚合模块ELAN-D。为网络设计新的小目标检测层以获取更精细的特征信息,从而提升模型的鲁棒性。同时使用MPDIoU(minimum point distance based IoU)替换原模型中的CIoU来优化损失函数,以适应遥感图像的尺度变化。实验表明,所提出的方法在DOTA-v1.0数据集上取得了良好效果,准确率、召回率和平均准确率(mean average precision,mAP)相比原模型分别提升了0.4、4.0、2.3个百分点,证明了该方法能够有效提升遥感图像中小目标的检测效果。 展开更多
关键词 深度学习 目标检测 遥感图像 目标 YOLOv7
下载PDF
一种基于多尺度的目标检测锚点构造方法 被引量:1
13
作者 邵延华 黄琦梦 +3 位作者 梅艳莹 张晓强 楚红雨 吴亚东 《红外技术》 CSCD 北大核心 2024年第2期162-167,共6页
目标检测是计算机视觉领域的研究热点和基础任务,其中基于锚点(Anchor)的目标检测已在众多领域得到广泛应用。当前锚点选取方法主要面临两个问题:基于特定数据集的先验取值尺寸固定、面对不同场景泛化能力弱。计算锚框的无监督K-means算... 目标检测是计算机视觉领域的研究热点和基础任务,其中基于锚点(Anchor)的目标检测已在众多领域得到广泛应用。当前锚点选取方法主要面临两个问题:基于特定数据集的先验取值尺寸固定、面对不同场景泛化能力弱。计算锚框的无监督K-means算法,受初始值影响较大,对目标尺寸较单一的数据集聚类产生的锚点差异较小,无法充分体现网络多尺度输出的特点。针对上述问题,本文提出一种基于多尺度的目标检测锚点构造方法(multi-scale-anchor,MSA),将聚类产生的锚点根据数据集本身的特性进行尺度的缩放和拉伸,优化的锚点即保留原数据集的特点也体现了模型多尺度的优势。另外,本方法应用在训练的预处理阶段,不增加模型推理时间。最后,选取单阶段主流算法YOLO(You Only Look Once),在多个不同场景的红外或工业场景数据集上进行丰富的实验。结果表明,多尺度锚点优化方法MSA能显著提高小样本场景的检测精度。 展开更多
关键词 目标检测 锚点 红外 YOLO(You Only Look Once) 多尺度分析
下载PDF
雷达信号与遥感地图融合的深度学习低慢小目标检测算法 被引量:2
14
作者 高梅国 林升泰 《信号处理》 CSCD 北大核心 2024年第1期82-93,共12页
雷达复杂环境低慢小目标检测是一项具有挑战性的任务,而利用深度学习以及数据特征融合等方法是解决这一难题的有效手段。本文在雷达地图融合检测网络(Radar Map fusion Detection Network,RMDN)的基础上进行了优化,主要优化方向为将雷... 雷达复杂环境低慢小目标检测是一项具有挑战性的任务,而利用深度学习以及数据特征融合等方法是解决这一难题的有效手段。本文在雷达地图融合检测网络(Radar Map fusion Detection Network,RMDN)的基础上进行了优化,主要优化方向为将雷达与地图信息在检测过程中进行重要性程度区分,具体优化内容为减少地图特征提取模块的网络深度,加入通道注意力机制,让神经网络自主学习雷达信息与地图信息特征的权重,使神经网能够更好地利用地图信息对雷达目标进行辅助检测。在此优化基础上,本文重新设计出了雷达地图融合检测网络RMDN-V2。算法的主要思想为利用卫星遥感地图来提供背景环境信息,作为雷达信号检测的辅助,通过将目标背景中的特征信息融入检测决策中,提高目标检测的准确性和鲁棒性,减少对强杂波和移动物体的干扰敏感性,改善目标检测算法在复杂环境下的表现。最后的无人机雷达实测数据实验结果表明,本文所做的针对性优化是有效的,RMDN-V2的检测性能优于原始的RMDN,同时本文算法检测性能远超传统的雷达检测算法,同时也优于目前主流的一些深度学习雷达目标检测算法。本文为解决当下低慢小目标检测的难题提出了新的算法。 展开更多
关键词 雷达目标检测 深度学习 雷达信号和遥感地图融合 低慢小目标检测
下载PDF
基于改进YOLOv5的遥感图像目标检测 被引量:4
15
作者 崔丽群 曹华维 《计算机工程》 CAS CSCD 北大核心 2024年第4期228-236,共9页
目前目标检测技术虽然已经趋于成熟,但是对遥感图像的检测仍存在不少挑战。针对遥感图像的背景复杂、目标尺度差异大、目标方向任意等特点造成目标检测精度低下的问题,提出一种基于改进YOLOv5的遥感图像目标检测算法。首先,构建一种联... 目前目标检测技术虽然已经趋于成熟,但是对遥感图像的检测仍存在不少挑战。针对遥感图像的背景复杂、目标尺度差异大、目标方向任意等特点造成目标检测精度低下的问题,提出一种基于改进YOLOv5的遥感图像目标检测算法。首先,构建一种联合注意力的多尺度特征增强网络,充分融合高低层特征,使特征层具有语义信息的同时包含丰富的细节信息,并在融合过程中利用设计的特征聚焦模块帮助模型选择关键特征,抑制无关信息。其次,使用感受野模块(RFB)对融合后的特征图进行更新,扩大特征图的感受野,减少特征信息损失。最后,对目标增加旋转角度,并采用圆形平滑标签将回归问题转化成分类问题,提高遥感目标定位的准确性。在用于航拍图像目标检测的大规模数据集(DOTA)上的实验结果表明,与YOLOv5算法相比,所提算法的交并比(Io U)为0.5和0.5~0.95时的平均精度均值(m AP@0.5和m AP@0.5∶0.95)分别提高了7.3和3.3个百分点,能够明显提高复杂背景下遥感图像目标的检测精度,并改善对遥感目标的漏检和误检情况。 展开更多
关键词 目标检测 遥感图像 特征融合 感受野模块 圆形平滑标签
下载PDF
基于改进Deformable-DETR的水下图像目标检测方法 被引量:2
16
作者 崔颖 韩佳成 +1 位作者 高山 陈立伟 《应用科技》 CAS 2024年第1期30-36,91,共8页
针对由于水下复杂环境造成的目标检测效果较差、检测精度较低的问题,基于Deformable-DETR算法提出一种改进的水下目标检测算法Deformable-DETR-DA。使用空间注意力模块结合标准Transformer块设计了一个用于增加模型深度的深度特征金字塔... 针对由于水下复杂环境造成的目标检测效果较差、检测精度较低的问题,基于Deformable-DETR算法提出一种改进的水下目标检测算法Deformable-DETR-DA。使用空间注意力模块结合标准Transformer块设计了一个用于增加模型深度的深度特征金字塔(deep feature pyramid networks,DFPN)模块,将其嵌入到模型中提高模型对深层纹理信息的提取能力。使用注意力引导的方式对原模型中编码器部分进行改进,加强了对特征信息的聚合能力,提高了模型在复杂环境下的检测能力。针对URPC数据集,模型各交并比尺度的平均准确度(average precision,AP)为39.5%,相比原模型提升1%,与一些DETR(detection transformer)类的模型相比,不同目标尺度的平均准确度均有1%~4%左右的提高,表明改进的模型能够很好解决复杂环境的水下目标检测的问题。本文提出的模型可作为其他水下目标检测模型设计的参考。 展开更多
关键词 水下光学图像 Deformable-DETR 目标检测 TRANSFORMER 注意力机制 深度学习 图像处理 残差网络
下载PDF
基于深度学习的无锚框目标检测算法综述 被引量:2
17
作者 高海涛 朱超涵 +2 位作者 张天棋 郝飞 茅新宇 《机床与液压》 北大核心 2024年第1期202-209,共8页
近年来,基于深度学习的无锚框目标检测算法备受关注。为了深入理解无锚框检测算法,对比分析了基于深度学习的无锚框检测算法的原理机制、网络结构、核心特性以及优缺点,归纳总结了无锚框检测算法的核心技术,并在同一数据集上通过性能实... 近年来,基于深度学习的无锚框目标检测算法备受关注。为了深入理解无锚框检测算法,对比分析了基于深度学习的无锚框检测算法的原理机制、网络结构、核心特性以及优缺点,归纳总结了无锚框检测算法的核心技术,并在同一数据集上通过性能实验研究上述算法的性能,总结提出基于深度学习的目标检测算法未来的研究方向。 展开更多
关键词 无锚框目标检测算法 深度学习 算法比较
下载PDF
基于改进YOLOv8的无人机航拍图像目标检测算法 被引量:5
18
作者 程换新 乔庆元 +1 位作者 骆晓玲 于沙家 《无线电工程》 2024年第4期871-881,共11页
针对现存无人机航拍图像目标检测算法检测精度较低、模型较为复杂的问题,提出一种改进YOLOv8的目标检测算法。在骨干网络引入多尺度注意力EMA,捕捉细节信息,以提高模型的特征提取能力;改进C2f模块,减小模型的计算量。提出了轻量级的Bi-Y... 针对现存无人机航拍图像目标检测算法检测精度较低、模型较为复杂的问题,提出一种改进YOLOv8的目标检测算法。在骨干网络引入多尺度注意力EMA,捕捉细节信息,以提高模型的特征提取能力;改进C2f模块,减小模型的计算量。提出了轻量级的Bi-YOLOv8特征金字塔网络结构改进YOLOv8的颈部,增强了模型多尺度特征融合能力,改善网络对小目标的检测精度。使用WIoU Loss优化原网络损失函数,引入一种动态非单调聚焦机制,提高模型的泛化能力。在无人机航拍数据集VisDrone2019上的实验表明,提出算法的mAP50为40.7%,较YOLOv8s提升了1.5%,参数量降低了42%,同时相比于其他先进的目标检测算法在精度和速度上均有提升,证明了改进算法的有效性和先进性。 展开更多
关键词 航拍图像 目标检测 YOLOv8 Bi-YOLOv8 轻量化
下载PDF
基于卷积神经网络的预制叠合板多目标智能化检测方法 被引量:2
19
作者 姚刚 廖港 +2 位作者 杨阳 李青泽 魏伏佳 《土木与环境工程学报(中英文)》 CSCD 北大核心 2024年第1期93-101,共9页
在生产过程中,预制构件尺寸不合格问题将导致其在施工现场无法顺利安装,从而影响工期。为推进预制构件智能化生产的进程,以预制叠合板为例,基于卷积神经网络研究生产过程中的智能检测方法,在生产流水线上设计并安装图像采集系统,建立预... 在生产过程中,预制构件尺寸不合格问题将导致其在施工现场无法顺利安装,从而影响工期。为推进预制构件智能化生产的进程,以预制叠合板为例,基于卷积神经网络研究生产过程中的智能检测方法,在生产流水线上设计并安装图像采集系统,建立预制叠合板尺寸检测数据集。通过YOLOv5算法实现对混凝土底板、预埋PVC线盒及外伸钢筋的识别,并以固定磁盒作为基准参照物进行尺寸检测误差分析,实现混凝土底板尺寸、预埋PVC线盒坐标的检测,在降低训练数据集参数规模的工况下保持较高的识别精度。结果表明:该方法可以有效检测预制叠合板的底板数量和尺寸、预埋PVC线盒数量和坐标,并实现弯折方向不合格的外伸钢筋检测,并能降低人工成本,提高检测精度,加快检测速度,提高预制叠合板的出厂质量。 展开更多
关键词 预制叠合板 目标检测 卷积神经网络 预制构件 智能化生产
下载PDF
AF-CenterNet:基于交叉注意力机制的毫米波雷达和相机融合的目标检测 被引量:1
20
作者 车俐 吕连辉 蒋留兵 《计算机应用研究》 CSCD 北大核心 2024年第4期1258-1263,共6页
对于自动驾驶领域而言,确保在各种天气和光照条件下精确检测其他车辆目标是至关重要的。针对单个传感器获取信息的局限性,提出一种基于cross-attention注意力机制的融合方法(AF),用于在特征层面上融合毫米波雷达和相机信息。首先,将毫... 对于自动驾驶领域而言,确保在各种天气和光照条件下精确检测其他车辆目标是至关重要的。针对单个传感器获取信息的局限性,提出一种基于cross-attention注意力机制的融合方法(AF),用于在特征层面上融合毫米波雷达和相机信息。首先,将毫米波雷达和相机进行空间对齐,并将对齐后的点云信息投影成点云图像。然后,将点云图像在高度和宽度方向上进行扩展,以提高相机图像和点云图像之间的匹配度。最后,将点云图像和相机图像送入包含AF结构的CenterNet目标检测网络中进行训练,并生成一个空间注意力权重,以增强相机中的关键特征。实验结果表明,AF结构可以提高原网络检测各种大小目标的性能,特别是对小目标的检测提升更为明显,且对系统的实时性影响不大,是提高车辆在多种场景下检测精度的理想选择。 展开更多
关键词 自动驾驶 目标检测 毫米波雷达 交叉注意力融合
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部