期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于孪生神经网络的楔形环连接结构预紧状态辨识
1
作者 盛俊杰 王九龙 +1 位作者 李树勇 文勇 《振动与冲击》 EI CSCD 北大核心 2024年第8期162-168,共7页
楔形环连接结构由于其连接简单可靠、同时兼具节省空间及减重的优势,常被应用于鱼雷、航天飞行器等武器装备。针对楔形环连接结构预紧状态辨识方面存在的机理模型复杂、样本量小且类别不平衡的问题,提出了一种基于孪生神经网络模型的预... 楔形环连接结构由于其连接简单可靠、同时兼具节省空间及减重的优势,常被应用于鱼雷、航天飞行器等武器装备。针对楔形环连接结构预紧状态辨识方面存在的机理模型复杂、样本量小且类别不平衡的问题,提出了一种基于孪生神经网络模型的预紧状态辨识方法。为提高模型训练效率和效果,首先利用时频处理技术进行孪生神经网络模型特征增强,基于增强特征建立了3层孪生神经网络分类模型,实现楔形环预紧状态宏观分类。同时,为指导楔形环精密装配,通过特征可视化技术,深入分析了孪生神经网络训练过程特征聚类效果,并基于二维特征建立了预紧状态定量表征模型,引入目标状态聚类中心与接受域参量,用于实现楔形环连接结构预紧状态定量评估。通过试验验证了所提方法的有效性,该方法可为楔形环连接结构定量辨识提供新的技术途径和思路,具有一定工程应用价值。 展开更多
关键词 楔形环连接结构 孪生神经网络 状态辨识 特征可视化 定量表征
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部