大数据时代,流数据大量涌现.概念漂移作为流数据挖掘中最典型且困难的问题,受到了越来越广泛的关注.集成学习是处理流数据中概念漂移的常用方法,然而在漂移发生后,学习模型往往无法对流数据的分布变化做出及时响应,且不能有效处理不同...大数据时代,流数据大量涌现.概念漂移作为流数据挖掘中最典型且困难的问题,受到了越来越广泛的关注.集成学习是处理流数据中概念漂移的常用方法,然而在漂移发生后,学习模型往往无法对流数据的分布变化做出及时响应,且不能有效处理不同类型概念漂移,导致模型泛化性能下降.针对这个问题,提出一种面向不同类型概念漂移的两阶段自适应集成学习方法(two-stage adaptive ensemble learning method for different types of concept drift,TAEL).该方法首先通过检测漂移跨度来判断概念漂移类型,然后根据不同漂移类型,提出“过滤-扩充”两阶段样本处理机制动态选择合适的样本处理策略.具体地,在过滤阶段,针对不同漂移类型,创建不同的非关键样本过滤器,提取历史样本块中的关键样本,使历史数据分布更接近最新数据分布,提高基学习器有效性;在扩充阶段,提出一种分块优先抽样方法,针对不同漂移类型设置合适的抽取规模,并根据历史关键样本所属类别在当前样本块上的规模占比设置抽样优先级,再由抽样优先级确定抽样概率,依据抽样概率从历史关键样本块中抽取关键样本子集扩充当前样本块,缓解样本扩充后的类别不平衡现象,解决当前基学习器欠拟合问题的同时增强其稳定性.实验结果表明,所提方法能够对不同类型的概念漂移做出及时响应,加快漂移发生后在线集成模型的收敛速度,提高模型的整体泛化性能.展开更多
概念漂移是流数据挖掘领域中的一个重要且具有挑战性的难题.然而,目前的方法大多仅能够处理线性或简单的非线性映射,深度神经网络虽然有较强的非线性拟合能力,但在流数据挖掘任务中,每次只能在新得到的1个或一批样本上进行训练,学习模...概念漂移是流数据挖掘领域中的一个重要且具有挑战性的难题.然而,目前的方法大多仅能够处理线性或简单的非线性映射,深度神经网络虽然有较强的非线性拟合能力,但在流数据挖掘任务中,每次只能在新得到的1个或一批样本上进行训练,学习模型难以实时调整以适应动态变化的数据流.为解决上述问题,将梯度提升算法的纠错思想引入含概念漂移的流数据挖掘任务之中,提出了一种基于自适应深度集成网络的概念漂移收敛方法(concept drift convergence method based on adaptive deep ensemble networks,CD_ADEN).该模型集成多个浅层神经网络作为基学习器,后序基学习器在前序基学习器输出的基础上不断纠错,具有较高的实时泛化性能.此外,由于浅层神经网络有较快的收敛速度,因此所提出的模型能够较快地从概念漂移造成的精度下降中恢复.多个数据集上的实验结果表明,所提出的CD_ADEN方法平均实时精度有明显提高,相较于对比方法,平均实时精度有1%~5%的提升,且平均序值在7种典型的对比算法中排名第一.说明所提出的方法能够对前序输出进行纠错,且学习模型能够快速地从概念漂移造成的精度下降中恢复,提升了在线学习模型的实时泛化性能.展开更多
大数据时代,越来越多的数据以数据流的形式产生,由于其具有快速、无限、不稳定及动态变化等特性,使得概念漂移成为流数据挖掘中一个重要但困难的问题.目前多数概念漂移处理方法存在信息提取能力有限且未充分考虑流数据的时序特性等问题...大数据时代,越来越多的数据以数据流的形式产生,由于其具有快速、无限、不稳定及动态变化等特性,使得概念漂移成为流数据挖掘中一个重要但困难的问题.目前多数概念漂移处理方法存在信息提取能力有限且未充分考虑流数据的时序特性等问题.针对这些问题,提出一种基于混合特征提取的流数据概念漂移处理方法(concept drift processing method of streaming data based on mixed feature extraction,MFECD).该方法首先采用不同尺度的卷积核对数据进行建模以构建拼接特征,采用门控机制将浅层输入和拼接特征融合,作为不同网络层次输入进行自适应集成,以获得能够兼顾细节信息和语义信息的数据特性.在此基础上,采用注意力机制和相似度计算评估流数据不同时刻的重要性,以增强数据流关键位点的时序特性.实验结果表明,该方法能有效提取流数据中包含的复杂数据特征和时序特征,提高了数据流中概念漂移的处理能力.展开更多
流数据作为大数据的重要形式广泛存在于实际问题中,由于流数据中数据分布变化产生概念漂移,容易导致模型的泛化性能下降,且在实际应用问题中,数据标记成本较高,难以获得强监督的信息.针对以上问题,本文提出一种基于在线深度神经网络的...流数据作为大数据的重要形式广泛存在于实际问题中,由于流数据中数据分布变化产生概念漂移,容易导致模型的泛化性能下降,且在实际应用问题中,数据标记成本较高,难以获得强监督的信息.针对以上问题,本文提出一种基于在线深度神经网络的弱监督概念漂移检测(Weakly supervised conceptual drift detection method based on online deep neural network,WSCDD)方法.该方法设计了一种在线深度神经网络模型,采用Hedge反向传播方法在线学习网络深度,并通过设计Dropout层在模型预测时引入随机性,利用蒙特卡罗方法量化深度神经网络模型的预测不确定性,通过自适应滑动窗口技术检测弱监督环境下概念漂移的发生,并使模型适应新的概念.实验结果表明,该方法可以准确检测数据流中概念漂移的发生,在漂移发生后能够快速收敛到新的数据分布,提高了学习模型的泛化性能.展开更多
为了快速适应非平稳环境中工业数据流的分布变化,需要在非结构化和噪声干扰的数据中准确、实时的完成概念漂移的检测.本文提出了一种基于多元区域集划分的工业数据流概念漂移检测算法(Concept Drift detection-Multivariate region set ...为了快速适应非平稳环境中工业数据流的分布变化,需要在非结构化和噪声干扰的数据中准确、实时的完成概念漂移的检测.本文提出了一种基于多元区域集划分的工业数据流概念漂移检测算法(Concept Drift detection-Multivariate region set Partition,CDMP).首先基于实例模糊密度进行多元区域集划分,根据划分的若干模糊分区集合,识别概念漂移发生的区域.概念漂移的持续发生会显著降低基于多元区域集构建的模型的分类性能,CDMP通过构建多元历史模型池来保留具有多样性的历史模型,以降低模型调整或再训练造成的性能损耗,同时保证概念漂移检测中准确性.CDMP在不同数据集上进行了性能测试.实验结果表明,CDMP实现了对历史模型多样性的保留和重用,能够在不同噪声水平的工业物联网环境中实现对重现型、突发型等多类型概念漂移的准确检测.展开更多
针对流数据中概念漂移发生后,在线学习模型不能对分布变化后的数据做出及时响应且难以提取数据分布的最新信息,导致学习模型收敛较慢的问题,提出一种基于在线集成的概念漂移自适应分类方法(adaptive classification method for concept ...针对流数据中概念漂移发生后,在线学习模型不能对分布变化后的数据做出及时响应且难以提取数据分布的最新信息,导致学习模型收敛较慢的问题,提出一种基于在线集成的概念漂移自适应分类方法(adaptive classification method for concept drift based on online ensemble,AC_OE).一方面,该方法利用在线集成策略构建在线集成学习器,对数据块中的训练样本进行局部预测以动态调整学习器权重,有助于深入提取漂移位点附近流数据的演化信息,对数据分布变化进行精准响应,提升在线学习模型对概念漂移发生后新数据分布的适应能力,提高学习模型的实时泛化性能;另一方面,利用增量学习策略构建增量学习器,并随新样本的进入进行增量式的训练更新,提取流数据的全局分布信息,使模型在平稳的流数据状态下保持较好的鲁棒性.实验结果表明,该方法能够对概念漂移做出及时响应并加速在线学习模型的收敛速度,同时有效提高学习器的整体泛化性能.展开更多
文摘大数据时代,流数据大量涌现.概念漂移作为流数据挖掘中最典型且困难的问题,受到了越来越广泛的关注.集成学习是处理流数据中概念漂移的常用方法,然而在漂移发生后,学习模型往往无法对流数据的分布变化做出及时响应,且不能有效处理不同类型概念漂移,导致模型泛化性能下降.针对这个问题,提出一种面向不同类型概念漂移的两阶段自适应集成学习方法(two-stage adaptive ensemble learning method for different types of concept drift,TAEL).该方法首先通过检测漂移跨度来判断概念漂移类型,然后根据不同漂移类型,提出“过滤-扩充”两阶段样本处理机制动态选择合适的样本处理策略.具体地,在过滤阶段,针对不同漂移类型,创建不同的非关键样本过滤器,提取历史样本块中的关键样本,使历史数据分布更接近最新数据分布,提高基学习器有效性;在扩充阶段,提出一种分块优先抽样方法,针对不同漂移类型设置合适的抽取规模,并根据历史关键样本所属类别在当前样本块上的规模占比设置抽样优先级,再由抽样优先级确定抽样概率,依据抽样概率从历史关键样本块中抽取关键样本子集扩充当前样本块,缓解样本扩充后的类别不平衡现象,解决当前基学习器欠拟合问题的同时增强其稳定性.实验结果表明,所提方法能够对不同类型的概念漂移做出及时响应,加快漂移发生后在线集成模型的收敛速度,提高模型的整体泛化性能.
文摘概念漂移是流数据挖掘领域中的一个重要且具有挑战性的难题.然而,目前的方法大多仅能够处理线性或简单的非线性映射,深度神经网络虽然有较强的非线性拟合能力,但在流数据挖掘任务中,每次只能在新得到的1个或一批样本上进行训练,学习模型难以实时调整以适应动态变化的数据流.为解决上述问题,将梯度提升算法的纠错思想引入含概念漂移的流数据挖掘任务之中,提出了一种基于自适应深度集成网络的概念漂移收敛方法(concept drift convergence method based on adaptive deep ensemble networks,CD_ADEN).该模型集成多个浅层神经网络作为基学习器,后序基学习器在前序基学习器输出的基础上不断纠错,具有较高的实时泛化性能.此外,由于浅层神经网络有较快的收敛速度,因此所提出的模型能够较快地从概念漂移造成的精度下降中恢复.多个数据集上的实验结果表明,所提出的CD_ADEN方法平均实时精度有明显提高,相较于对比方法,平均实时精度有1%~5%的提升,且平均序值在7种典型的对比算法中排名第一.说明所提出的方法能够对前序输出进行纠错,且学习模型能够快速地从概念漂移造成的精度下降中恢复,提升了在线学习模型的实时泛化性能.
文摘大数据时代,越来越多的数据以数据流的形式产生,由于其具有快速、无限、不稳定及动态变化等特性,使得概念漂移成为流数据挖掘中一个重要但困难的问题.目前多数概念漂移处理方法存在信息提取能力有限且未充分考虑流数据的时序特性等问题.针对这些问题,提出一种基于混合特征提取的流数据概念漂移处理方法(concept drift processing method of streaming data based on mixed feature extraction,MFECD).该方法首先采用不同尺度的卷积核对数据进行建模以构建拼接特征,采用门控机制将浅层输入和拼接特征融合,作为不同网络层次输入进行自适应集成,以获得能够兼顾细节信息和语义信息的数据特性.在此基础上,采用注意力机制和相似度计算评估流数据不同时刻的重要性,以增强数据流关键位点的时序特性.实验结果表明,该方法能有效提取流数据中包含的复杂数据特征和时序特征,提高了数据流中概念漂移的处理能力.
文摘流数据作为大数据的重要形式广泛存在于实际问题中,由于流数据中数据分布变化产生概念漂移,容易导致模型的泛化性能下降,且在实际应用问题中,数据标记成本较高,难以获得强监督的信息.针对以上问题,本文提出一种基于在线深度神经网络的弱监督概念漂移检测(Weakly supervised conceptual drift detection method based on online deep neural network,WSCDD)方法.该方法设计了一种在线深度神经网络模型,采用Hedge反向传播方法在线学习网络深度,并通过设计Dropout层在模型预测时引入随机性,利用蒙特卡罗方法量化深度神经网络模型的预测不确定性,通过自适应滑动窗口技术检测弱监督环境下概念漂移的发生,并使模型适应新的概念.实验结果表明,该方法可以准确检测数据流中概念漂移的发生,在漂移发生后能够快速收敛到新的数据分布,提高了学习模型的泛化性能.
文摘为了快速适应非平稳环境中工业数据流的分布变化,需要在非结构化和噪声干扰的数据中准确、实时的完成概念漂移的检测.本文提出了一种基于多元区域集划分的工业数据流概念漂移检测算法(Concept Drift detection-Multivariate region set Partition,CDMP).首先基于实例模糊密度进行多元区域集划分,根据划分的若干模糊分区集合,识别概念漂移发生的区域.概念漂移的持续发生会显著降低基于多元区域集构建的模型的分类性能,CDMP通过构建多元历史模型池来保留具有多样性的历史模型,以降低模型调整或再训练造成的性能损耗,同时保证概念漂移检测中准确性.CDMP在不同数据集上进行了性能测试.实验结果表明,CDMP实现了对历史模型多样性的保留和重用,能够在不同噪声水平的工业物联网环境中实现对重现型、突发型等多类型概念漂移的准确检测.
文摘针对流数据中概念漂移发生后,在线学习模型不能对分布变化后的数据做出及时响应且难以提取数据分布的最新信息,导致学习模型收敛较慢的问题,提出一种基于在线集成的概念漂移自适应分类方法(adaptive classification method for concept drift based on online ensemble,AC_OE).一方面,该方法利用在线集成策略构建在线集成学习器,对数据块中的训练样本进行局部预测以动态调整学习器权重,有助于深入提取漂移位点附近流数据的演化信息,对数据分布变化进行精准响应,提升在线学习模型对概念漂移发生后新数据分布的适应能力,提高学习模型的实时泛化性能;另一方面,利用增量学习策略构建增量学习器,并随新样本的进入进行增量式的训练更新,提取流数据的全局分布信息,使模型在平稳的流数据状态下保持较好的鲁棒性.实验结果表明,该方法能够对概念漂移做出及时响应并加速在线学习模型的收敛速度,同时有效提高学习器的整体泛化性能.