期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
基于特征类型概率剪枝查询的算法研究
1
作者 占美星 范少帅 周鹏 《科技风》 2019年第29期97-99,共3页
针对不确定对象的最近邻反向查询没有考虑多种特征类型而不能满足复杂的应用场景的问题,提出了基于限界剪枝和概率剪枝的多类型概率最近邻反向(Multiple types probabilistic nearest neighbor reverse,MTPNNR)查询算法。限界剪枝利用... 针对不确定对象的最近邻反向查询没有考虑多种特征类型而不能满足复杂的应用场景的问题,提出了基于限界剪枝和概率剪枝的多类型概率最近邻反向(Multiple types probabilistic nearest neighbor reverse,MTPNNR)查询算法。限界剪枝利用最小耗费来修剪不可行解或者非最优解对象;概率剪枝是基于概率分布模型和不确定对象分解的策略,根据概率各个阀值和剪枝的深度来控制需要剪枝的精度。与原始基于定义的算法相比较,MTPNNR查询算法在CPU资源开销方面有比较大的优势,能够完成在较大数据复杂等环境下的查询。基于实验结果显示,MTPNNR算法在离散型的数据集和不确定数据集上有比较好的查询效率。 展开更多
关键词 不确定对象 最近邻反向查询 概率剪枝 限界剪枝
下载PDF
基于概率的剪枝算法 被引量:1
2
作者 纪洪生 《电脑知识与技术》 2006年第11期99-100,共2页
以alpha—beta剪枝算法为研究对象,提出一种基于alpha—beta剪枝和概率剪枝因素相结合的概率剪枝算法.来解决博弈树搜索问题。利用概率剪枝算法,可减少博弈树搜索深度,从而加快搜索进程。
关键词 alpha—beta剪枝 概率剪枝 博弈树
下载PDF
A Novel Deep Neural Network Compression Model for Airport Object Detection 被引量:3
3
作者 LYU Zonglei PAN Fuxi XU Xianhong 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2020年第4期562-573,共12页
A novel deep neural network compression model for airport object detection has been presented.This novel model aims at disadvantages of deep neural network,i.e.the complexity of the model and the great cost of calcula... A novel deep neural network compression model for airport object detection has been presented.This novel model aims at disadvantages of deep neural network,i.e.the complexity of the model and the great cost of calculation.According to the requirement of airport object detection,the model obtains temporal and spatial semantic rules from the uncompressed model.These spatial semantic rules are added to the model after parameter compression to assist the detection.The rules can improve the accuracy of the detection model in order to make up for the loss caused by parameter compression.The experiments show that the effect of the novel compression detection model is no worse than that of the uncompressed original model.Even some of the original model false detection can be eliminated through the prior knowledge. 展开更多
关键词 compression model semantic rules PRUNING prior probability lightweight detection
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部