期刊文献+
共找到19篇文章
< 1 >
每页显示 20 50 100
基于递推子空间的机组数字孪生模型预测精度优化方法
1
作者 赵彦博 蔡远利 胡怀中 《系统仿真学报》 CAS CSCD 北大核心 2024年第1期195-202,共8页
由于机理分析的简化假设条件或设备实际运行中参数特性偏移等因素,导致机理建模不可避免存在模型误差。针对该问题,提出一种基于递推子空间的火电机组数字孪生模型预测精度优化方法。分析机组关键设备的运行机制,结合典型工况小样本数据... 由于机理分析的简化假设条件或设备实际运行中参数特性偏移等因素,导致机理建模不可避免存在模型误差。针对该问题,提出一种基于递推子空间的火电机组数字孪生模型预测精度优化方法。分析机组关键设备的运行机制,结合典型工况小样本数据,建立火电机组的全设备多工况非线性动态机理模型,确保数字孪生系统模型具有较好的可解释性与泛化性能;基于递推子空间辨识方法,建立预测精度优化模型并实时进行在线更新,补偿机理模型产生的误差,提高整体模型的预测精度,保证数字孪生模型的高保真性。仿真实验验证了所提方法的有效性。 展开更多
关键词 数字孪生 火电机组 模型预测精度优化 子空间辨识 数据驱动
原文传递
中厚板精轧过程的高精度温度预测模型 被引量:18
2
作者 胡贤磊 矫志杰 +1 位作者 李建民 刘相华 《东北大学学报(自然科学版)》 EI CAS CSCD 北大核心 2003年第1期71-74,共4页
从设定模型角度结合中厚板精轧过程的工艺特点,分析了热辐射和对流、高压水除鳞、轧辊的热传导和塑性功对钢板温度变化的影响,得出如下结果:①钢板热辐射和对流过程可以简化成一维热传导方程,钢板的黑度可考虑成钢板厚度的函数;②高压... 从设定模型角度结合中厚板精轧过程的工艺特点,分析了热辐射和对流、高压水除鳞、轧辊的热传导和塑性功对钢板温度变化的影响,得出如下结果:①钢板热辐射和对流过程可以简化成一维热传导方程,钢板的黑度可考虑成钢板厚度的函数;②高压水除鳞过程可以简化成半无限体平板的瞬态热传导模型;③轧辊的热传导过程可简化成两个半无限体之间的热传导过程,接触热阻的影响通过修正系数进行调节;④塑性功造成的温度变化必须考虑热功转化效率的影响·通过与实际数据的比较可以看出该模型具有很好的预测精度· 展开更多
关键词 精度温度预测模型 中厚板 精轧 热辐射 对流 高压水除鳞 热传导 工艺特点 钢板 预测精度
下载PDF
FDM成形件精度预测模型的建立 被引量:8
3
作者 孙春华 《机械科学与技术》 CSCD 北大核心 2010年第3期399-403,共5页
熔融沉积成形(FDM)是快速成型(RP)最有发展前途的工艺之一,掌握提高成形件精度的控制方法是推广其应用的重要途径。在分析FDM成形件精度影响因素的基础上,提出应用误差反向传播(BP)神经网络建立预测精度模型的方法。将主要影响因素作为B... 熔融沉积成形(FDM)是快速成型(RP)最有发展前途的工艺之一,掌握提高成形件精度的控制方法是推广其应用的重要途径。在分析FDM成形件精度影响因素的基础上,提出应用误差反向传播(BP)神经网络建立预测精度模型的方法。将主要影响因素作为BP神经网络模型的输入参数,并根据最小预测误差选择输入层和中间层的维数,确定了BP模型结构。利用多组实验数据进行模型训练,建立了BP神经网络模型。模型预测与实验测量的对比结果表明,模型的预测误差在6%以内,具有很高的预测精度,可以指导实际应用。 展开更多
关键词 快速成型 FDM BP神经网络 精度预测模型
下载PDF
高精度预测模型及其构建方法——以脉状金矿为例 被引量:1
4
作者 张均 《高校地质学报》 CAS CSCD 2000年第1期64-71,共8页
采用“场理论—场结构—场分析—场模拟”方法构建了具有时空结构框架 ,能反映局部异常精细结构特征 ,可对多元预测信息进行有效提取和集约化分析的高精度预测找矿模型。该模型是对致矿异常结构、矿化结构和信息结构的耦合分析与关键预... 采用“场理论—场结构—场分析—场模拟”方法构建了具有时空结构框架 ,能反映局部异常精细结构特征 ,可对多元预测信息进行有效提取和集约化分析的高精度预测找矿模型。该模型是对致矿异常结构、矿化结构和信息结构的耦合分析与关键预测信息提取及优化相匹配和深化后的最佳表达方式。其技术关键是预测对象的地质、地球物理。 展开更多
关键词 精度预测模型 异常结构 矿化结构 金矿床
下载PDF
数控车削加工精度综合预测模型构建 被引量:3
5
作者 辛梅 《机械设计与制造工程》 2017年第4期34-37,共4页
针对数控车床加工精度控制的要求,提出一种车削加工精度预测综合模型。首先根据影响数控车削加工的因素,引入齐次坐标变化,构建多因素加工精度预测综合模型;其次利用综合误差法对各个精度的加工误差进行辨识,从而计算得到预测的工件直径... 针对数控车床加工精度控制的要求,提出一种车削加工精度预测综合模型。首先根据影响数控车削加工的因素,引入齐次坐标变化,构建多因素加工精度预测综合模型;其次利用综合误差法对各个精度的加工误差进行辨识,从而计算得到预测的工件直径;最后根据上述模型,以CAK 8085dj作为实验对象,对其误差进行测量,并与实际加工值进行比较,从而验证了上述模型的有效性和可行性。 展开更多
关键词 数控车削加工 精度预测模型 齐次坐标 误差辨识
下载PDF
BP神经网络在煤矿井下涌水量预测中的应用 被引量:1
6
作者 权文斌 路文文 《陕西煤炭》 2024年第2期104-109,共6页
矿井涌水量受到多种因素的共同影响,具有非线性和高度复杂性的特点。根据黄陵一号煤矿井下涌水量影响因素及2014—2018年的涌水量数据,采用2种不同的输入神经元的方法创建神经网络预测模型,用已知数据对创建好的模型进行训练,得到拟合... 矿井涌水量受到多种因素的共同影响,具有非线性和高度复杂性的特点。根据黄陵一号煤矿井下涌水量影响因素及2014—2018年的涌水量数据,采用2种不同的输入神经元的方法创建神经网络预测模型,用已知数据对创建好的模型进行训练,得到拟合精度较好的模型,并用得到的神经网络模型对涌水量进行预测,最后与实际值进行比较。结果表明,2种神经网络模型的预测结果精度都较好,但预测精度有差异,用涌水量影响因素为输入神经元的模型在短期预测精度上低于涌水量组合作为输入神经元的模型;而在长期预测方面,涌水量影响因素为输入神经元的模型预测精度高于涌水量组合作为输入神经元的模型。 展开更多
关键词 矿井涌水量 BP神经网络 迭代训练 拟合精度:模型预测
下载PDF
不同数学模型在辽宁中西部地区中长期降水预测的适用性分析 被引量:1
7
作者 张立章 《水土保持应用技术》 2019年第6期39-41,共3页
结合辽宁中部和西部6~9月的实测降水数据,对比分析马尔可夫链、小波分析、模糊数学以及神经网络4种数学模型在辽宁中部和西部地区中长期降水预测中的适用性。结果表明:在辽宁中部地区,马尔可夫链的适应性最高,预测合格率达到66.7%,而在... 结合辽宁中部和西部6~9月的实测降水数据,对比分析马尔可夫链、小波分析、模糊数学以及神经网络4种数学模型在辽宁中部和西部地区中长期降水预测中的适用性。结果表明:在辽宁中部地区,马尔可夫链的适应性最高,预测合格率达到66.7%,而在辽宁西部地区,神经网络模型适用性最高,预测合格率达到55.6%。研究结果对于辽宁中部和西部地区降水中长期预测具有重要的参考价值。 展开更多
关键词 数学模型 中长期降水预测 模型预测精度对比 辽宁中西部地区
下载PDF
基于Citespace的物种分布预测研究进展的可视化分析 被引量:4
8
作者 昌秋霞 钟云芳 +2 位作者 张哲 赵莹 宋希强 《林业调查规划》 2022年第2期20-33,共14页
明确物种分布区范围是对物种进行有效保护管理的基础。为全面了解国内外物种分布区预测研究进展及热点,基于Citespace软件,以WOS核心数据库、中国知网CNKI数据库中相关研究文献为研究对象,归纳国内外该研究领域的发展历程,总结其研究热... 明确物种分布区范围是对物种进行有效保护管理的基础。为全面了解国内外物种分布区预测研究进展及热点,基于Citespace软件,以WOS核心数据库、中国知网CNKI数据库中相关研究文献为研究对象,归纳国内外该研究领域的发展历程,总结其研究热点与趋势。结果表明,中外物种分布预测研究发展历程大致相同,可分为初级探索阶段与高速发展阶段;生物入侵范围预测、气候变化对物种分布格局的影响、Maxent模型的应用等内容是初期的研究热点,基于R语言的多模型联合优化研究、传染病病原体的传播及扩散路径预测、珍稀濒危物种种群动态预测等研究方向是目前的研究趋势与热点。就物种分布预测研究发展方向进行了讨论。 展开更多
关键词 物种分布 CITESPACE 可视化分析 知识图谱 关键词聚类 预测模型精度
下载PDF
应用多酚-叶绿素仪监测棉花氮素营养状况研究 被引量:7
9
作者 殷星 侯振安 +7 位作者 冶军 闵伟 刘凯 王方斌 廖欢 甘浩天 刘少华 孙嘉璘 《植物营养与肥料学报》 CAS CSCD 北大核心 2021年第7期1198-1212,共15页
【目的】通过田间试验,研究使用多酚-叶绿素仪对棉花进行快速无损氮素营养诊断适宜的指标。【方法】田间试验在新疆石河子市进行,设3个施氮处理,分别为施纯N 0、180和240 kg/hm^(2),分别用N0、N180和N240表示。所有氮肥分5次随滴灌施入... 【目的】通过田间试验,研究使用多酚-叶绿素仪对棉花进行快速无损氮素营养诊断适宜的指标。【方法】田间试验在新疆石河子市进行,设3个施氮处理,分别为施纯N 0、180和240 kg/hm^(2),分别用N0、N180和N240表示。所有氮肥分5次随滴灌施入,每次施肥后3天,利用多酚-叶绿素仪(Dualex-4)和SPAD叶绿素仪分别测定20株棉花叶片的氮平衡指数(NBI)、Chl值和SPAD值,同步采样测定棉花叶片全氮含量,及0—20 cm、0—40 cm和0—60 cm土层硝态氮含量。【结果】随着施氮量的增加棉花叶片全氮含量和土壤硝态氮含量均显著增加。其中,0—40 cm土层硝态氮含量与棉花叶片全氮含量关系最密切。增加氮肥施用量,棉花叶片氮素营养诊断指标NBI、Chl值和SPAD值均显著增加。棉花叶片NBI、Chl和SPAD与叶片全氮含量均呈极显著正相关关系,且相关系数(r)均达到0.8以上。相关性模型校验结果表明,棉花叶片全氮含量实测值与预测值的平均相对误差(RE)分别为-4.0%(NBI)、-3.1%(Chl)和-5.7%(SAPD)。其中,氮平衡指数(NBI)模型对棉花叶片全氮含量的预测精度最高,与实测值的相关系数达到了0.9143,平均绝对百分比误差(MAPE)为6.91%;标准均方根误差(nRMSE)为8.21%。棉花叶片NBI、Chl和SPAD与土壤硝态氮的模型决定系数表现为NBI>Chl>SPAD。模型校验分析表明,NBI模型与0—40 cm土层硝态氮实测含量的相关性最高,相关系数为0.9116,预测值与实测值的MAPE和nRMSE分别为14.11%和17.88%。【结论】应用多酚-叶绿素仪监测棉花氮素营养,氮平衡指数(NBI)与棉花叶片氮含量和0—40 cm土层硝态氮含量的相关性最高,预测值与实测值的误差仅为6.91%和14.11%,可以满足膜下滴灌条件下棉花氮素营养的快速诊断需求。 展开更多
关键词 多酚-叶绿素仪 氮素平衡指数 叶绿素 SPAD 土壤硝态氮含量 棉花叶片全氮含量 模型预测精度
下载PDF
A strip thickness prediction method of hot rolling based on D_S information reconstruction 被引量:1
10
作者 孙丽杰 邵诚 张利 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第6期2192-2200,共9页
To improve prediction accuracy of strip thickness in hot rolling, a kind of Dempster/Shafer(D_S) information reconstitution prediction method(DSIRPM) was presented. DSIRPM basically consisted of three steps to impleme... To improve prediction accuracy of strip thickness in hot rolling, a kind of Dempster/Shafer(D_S) information reconstitution prediction method(DSIRPM) was presented. DSIRPM basically consisted of three steps to implement the prediction of strip thickness. Firstly, iba Analyzer was employed to analyze the periodicity of hot rolling and find three sensitive parameters to strip thickness, which were used to undertake polynomial curve fitting prediction based on least square respectively, and preliminary prediction results were obtained. Then, D_S evidence theory was used to reconstruct the prediction results under different parameters, in which basic probability assignment(BPA) was the key and the proposed contribution rate calculated using grey relational degree was regarded as BPA, which realizes BPA selection objectively. Finally, from this distribution, future strip thickness trend was inferred. Experimental results clearly show the improved prediction accuracy and stability compared with other prediction models, such as GM(1,1) and the weighted average prediction model. 展开更多
关键词 grey relational degree GM(1 1) model Dempster/Shafer (D_S) method least square method thickness prediction
下载PDF
Soft measurement for component content based on adaptive model of Pr/Nd color features 被引量:5
11
作者 陆荣秀 杨辉 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2015年第12期1981-1986,共6页
For measurement of component content in the extraction and separation process of praseodymium/neodymium(Pr/Nd), a soft measurement method was proposed based on modeling of ion color features, which is suitable for fas... For measurement of component content in the extraction and separation process of praseodymium/neodymium(Pr/Nd), a soft measurement method was proposed based on modeling of ion color features, which is suitable for fast estimation of component content in production field. Feature analysis on images of the solution is conducted,which are captured from Pr/Nd extraction/separation field. H/S components in the HSI color space are selected as model inputs, so as to establish the least squares support vector machine(LSSVM) model for Nd(Pr) content,while the model parameters are determined with the GA algorithm. To improve the adaptability of the model,the adaptive iteration algorithm is used to correct parameters of the LSSVM model, on the basis of model correction strategy and new sample data. Using the field data collected from rare earth extraction production, predictive methods for component content and comparisons are given. The results indicate that the proposed method presents good adaptability and high prediction precision, so it is applicable to the fast detection of element content in the rare earth extraction. 展开更多
关键词 Pr/Nd extraction Color feature Component content Adaptive iterative least squares support vector machine Real-time correction
下载PDF
Introducing atmospheric angular momentum into prediction of length of day change by generalized regression neural network model 被引量:9
12
作者 王琪洁 杜亚男 刘建 《Journal of Central South University》 SCIE EI CAS 2014年第4期1396-1401,共6页
The general regression neural network(GRNN) model was proposed to model and predict the length of day(LOD) change, which has very complicated time-varying characteristics. Meanwhile, considering that the axial atmosph... The general regression neural network(GRNN) model was proposed to model and predict the length of day(LOD) change, which has very complicated time-varying characteristics. Meanwhile, considering that the axial atmospheric angular momentum(AAM) function is tightly correlated with the LOD changes, it was introduced into the GRNN prediction model to further improve the accuracy of prediction. Experiments with the observational data of LOD changes show that the prediction accuracy of the GRNN model is 6.1% higher than that of BP network, and after introducing AAM function, the improvement of prediction accuracy further increases to 14.7%. The results show that the GRNN with AAM function is an effective prediction method for LOD changes. 展开更多
关键词 general regression neural network(GRNN) length of day atmospheric angular momentum(AAM) function prediction
下载PDF
Wind Speed Forecasting Based on ARMA-ARCH Model in Wind Farms 被引量:3
13
作者 He Yu Gao Shan Chen Hao 《Electricity》 2011年第3期30-34,共5页
Wind speed forecasting is signif icant for wind farm planning and power grid operation. The research in this paper uses Eviews software to build the ARMA (autoregressive moving average) model of wind speed time series... Wind speed forecasting is signif icant for wind farm planning and power grid operation. The research in this paper uses Eviews software to build the ARMA (autoregressive moving average) model of wind speed time series, and employs Lagrange multipliers to test the ARCH (autoregressive conditional heteroscedasticity) effects of the residuals of the ARMA model. Also, the corresponding ARMA-ARCH models are established, and the wind speed series are forecasted by using the ARMA model and ARMA-ARCH model respectively. The comparison of the forecasting accuracy of the above two models shows that the ARMA-ARCH model possesses higher forecasting accuracy than the ARMA model and has certain practical value. 展开更多
关键词 short-term wind speed forecasting ARMA model ARCH effect volatility clustering
下载PDF
PV Power Short-Term Forecasting Model Based on the Data Gathered from Monitoring Network 被引量:1
14
作者 ZHONG Zhifeng TAN Jianjun +1 位作者 ZHANG Tianjin ZHU Linlin 《China Communications》 SCIE CSCD 2014年第A02期61-69,共9页
The degree of accuracy in predicting the photovoltaic power generation plays an important role in appropriate allocations and economic operations of the power plants based on the generating capacity data gathered from... The degree of accuracy in predicting the photovoltaic power generation plays an important role in appropriate allocations and economic operations of the power plants based on the generating capacity data gathered from the geographically separated photovoltaic plants through network. In this paper, a forecasting model is designed with an optimization algorithm which is developed with the combination of PSO (Particle Swarm Optimization) and BP (Back Propagation) neural network. The proposed model is further validated and the experiment results show that the predication model assures the prediction accuracy regardless the day type transitions and other relevant factors, in the proposed model, the prediction error rate is worth less than 20% in all different climatic conditions and most of the prediction error accuracy is less than 10% in sunny day, and whose precision satisfies the management requirements of the power grid companies, reflecting the significance of the proposed model in engineering applications. 展开更多
关键词 grid-connected PV plant short-termpower generation prediction particle swarmoptimization BP neural network
下载PDF
Prediction model for permeability index by integrating case-based reasoning with adaptive particle swarm optimization
15
作者 朱红求 《High Technology Letters》 EI CAS 2009年第3期267-271,共5页
To effectively predict the permeability index of smelting process in the imperial smelting furnace, an intelligent prediction model is proposed. It integrates the case-based reasoning (CBR) with adaptive par- ticle ... To effectively predict the permeability index of smelting process in the imperial smelting furnace, an intelligent prediction model is proposed. It integrates the case-based reasoning (CBR) with adaptive par- ticle swarm optimization (PSO). The nmnber of nearest neighbors and the weighted features vector are optimized online using the adaptive PSO to improve the prediction accuracy of CBR. The adaptive inertia weight and mutation operation are used to overcome the premature convergence of the PSO. The proposed method is validated a compared with the basic weighted CBR. The results show that the proposed model has higher prediction accuracy and better performance than the basic CBR model. 展开更多
关键词 lead and zinc smelting permeability index prediction case-based reasoning (CBR) adaptive particle swarm optimization (PS0)
下载PDF
A Selective Moving Window Partial Least Squares Method and Its Application in Process Modeling 被引量:1
16
作者 徐欧官 傅永峰 +1 位作者 苏宏业 李丽娟 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2014年第7期799-804,共6页
A selective moving window partial least squares(SMW-PLS) soft sensor was proposed in this paper and applied to a hydro-isomerization process for on-line estimation of para-xylene(PX) content. Aiming at the high freque... A selective moving window partial least squares(SMW-PLS) soft sensor was proposed in this paper and applied to a hydro-isomerization process for on-line estimation of para-xylene(PX) content. Aiming at the high frequency of model updating in previous recursive PLS methods, a selective updating strategy was developed. The model adaptation is activated once the prediction error is larger than a preset threshold, or the model is kept unchanged.As a result, the frequency of model updating is reduced greatly, while the change of prediction accuracy is minor.The performance of the proposed model is better as compared with that of other PLS-based model. The compromise between prediction accuracy and real-time performance can be obtained by regulating the threshold. The guidelines to determine the model parameters are illustrated. In summary, the proposed SMW-PLS method can deal with the slow time-varying processes effectively. 展开更多
关键词 SMW-PLS Hydro-isomerizafion process Selective updating strategy Soft sensor
下载PDF
Study on Residual Oil HDS Process with Mechanism Model and ANN Model
17
作者 Ma Chengguo Weng Huixin (Research Center of Petroleum Processing, ECUST, Shanghai 200237) 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS 2009年第1期39-43,共5页
Based on the Residual Oil Hydrodesulfurization Treatment Unit (S-RHT), the n-order reaction kinetic model for residual oil HDS reactions and artificial neural network (ANN) model were developed to determine the sulfur... Based on the Residual Oil Hydrodesulfurization Treatment Unit (S-RHT), the n-order reaction kinetic model for residual oil HDS reactions and artificial neural network (ANN) model were developed to determine the sulfur content of hydrogenated residual oil. The established ANN model covered 4 input variables, 1 output variable and 1 hidden layer with 15 neurons. The comparison between the results of two models was listed. The results showed that the predicted mean relative errors of the two models with three different sample data were less than 5% and both the two models had good predictive precision and extrapolative feature for the HDS process. The mean relative error of 5 sets of testing data of the ANN model was 1.62%—3.23%, all of which were smaller than that of the common mechanism model (3.47%— 4.13%). It showed that the ANN model was better than the mechanism model both in terms of fitting results and fitting difficulty. The models could be easily applied in practice and could also provide a reference for the further research of residual oil HDS process. 展开更多
关键词 residual oil hydrodesulfurization (HDS) mechanism model artificial neural network (ANN) model
下载PDF
A genetic Gaussian process regression model based on memetic algorithm 被引量:2
18
作者 张乐 刘忠 +1 位作者 张建强 任雄伟 《Journal of Central South University》 SCIE EI CAS 2013年第11期3085-3093,共9页
Gaussian process(GP)has fewer parameters,simple model and output of probabilistic sense,when compared with the methods such as support vector machines.Selection of the hyper-parameters is critical to the performance o... Gaussian process(GP)has fewer parameters,simple model and output of probabilistic sense,when compared with the methods such as support vector machines.Selection of the hyper-parameters is critical to the performance of Gaussian process model.However,the common-used algorithm has the disadvantages of difficult determination of iteration steps,over-dependence of optimization effect on initial values,and easily falling into local optimum.To solve this problem,a method combining the Gaussian process with memetic algorithm was proposed.Based on this method,memetic algorithm was used to search the optimal hyper parameters of Gaussian process regression(GPR)model in the training process and form MA-GPR algorithms,and then the model was used to predict and test the results.When used in the marine long-range precision strike system(LPSS)battle effectiveness evaluation,the proposed MA-GPR model significantly improved the prediction accuracy,compared with the conjugate gradient method and the genetic algorithm optimization process. 展开更多
关键词 Gaussian process hyper-parameters optimization memetic algorithm regression model
下载PDF
Variable Selection Procedures in Linear Regression Models with Screening Consistency Property
19
作者 XIE Yanxi XIA Zhijie +1 位作者 WANG Xiaoli YAN Ruixia 《International English Education Research》 2017年第1期34-37,共4页
There are two fundamental goals in statistical learning: identifying relevant predictors and ensuring high prediction accuracy. The first goal, by means of variable selection, is of particular importance when the tru... There are two fundamental goals in statistical learning: identifying relevant predictors and ensuring high prediction accuracy. The first goal, by means of variable selection, is of particular importance when the true underlying model has a sparse representation. Discovering relevant predictors can enhance the performance of the prediction for the fitted model. Usually an estimate is considered desirable if it is consistent in terms of both coefficient estimate and variable selection. Hence, before we try to estimate the regression coefficients β , it is preferable that we have a set of useful predictors m hand. The emphasis of our task in this paper is to propose a method, in the aim of identifying relevant predictors to ensure screening consistency in variable selection. The primary interest is on Orthogonal Matching Pursuit(OMP). 展开更多
关键词 variable selection orthogonal matching pursuit high dimensional setup screening consistency
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部