单相开路故障的五相永磁同步电机(permanent-magnet synchronous motor,PMSM)采用有限集模型预测转矩和磁链控制(finite-control-set model predictive torque and flux control,FCS-MPTFC)策略,存在转矩脉动大、价值函数的权重系数整...单相开路故障的五相永磁同步电机(permanent-magnet synchronous motor,PMSM)采用有限集模型预测转矩和磁链控制(finite-control-set model predictive torque and flux control,FCS-MPTFC)策略,存在转矩脉动大、价值函数的权重系数整定困难、迭代计算量大以及共模电压(commonmode voltage,CMV)高等问题。为此,该文提出一种简化FCS-MPTFC策略。首先,建立五相PMSM在单相开路故障情况下的数学模型,并分析CMV产生的机理。其次,以抑制3次谐波电流的原则合成等幅值虚拟电压矢量(virtual voltage vector,V^(3)),并将转矩和磁链价值函数等效转化为电压价值函数,同时采用无差拍控制思想计算出参考电压矢量,进而通过合理划分扇区,直接获得最优V^(3)。最后,选择方向相反的两个基电压矢量代替零矢量,以减小开路故障下的CMV。仿真和实验结果表明:所提控制策略不仅能抑制单相开路故障导致的转矩脉动、降低计算负荷和CMV、抑制电流谐波,而且具有优良的稳态和动态性能。展开更多
当参数失配时,永磁同步电机的显式模型预测(explicit model predictive,EMP)直接速度控制将出现明显的稳态静差。为此,现有方法通过配置扩张状态观测器(extended state observer,ESO)来实时观测和前馈补偿模型偏差,以实现无静差、高精...当参数失配时,永磁同步电机的显式模型预测(explicit model predictive,EMP)直接速度控制将出现明显的稳态静差。为此,现有方法通过配置扩张状态观测器(extended state observer,ESO)来实时观测和前馈补偿模型偏差,以实现无静差、高精度的转速跟随控制。但实验和理论分析表明,由于ESO的带宽有限,对于变化扰动的补偿能力较弱,参数失配时系统的动态性能恶化。为同时改善参数失配时系统的稳态控制精度和动态性能,并提高鲁棒性,该文将无模型控制与EMP控制进行融合,通过构造超局部预测模型和数据驱动观测器,提出新的EMP直接速度控制策略。实验结果表明:所提方法凭借数据驱动观测器的高观测带宽,可以同时在动态和稳态阶段实现参数失配的优良补偿,兼顾动态与稳态性能。展开更多
文摘单相开路故障的五相永磁同步电机(permanent-magnet synchronous motor,PMSM)采用有限集模型预测转矩和磁链控制(finite-control-set model predictive torque and flux control,FCS-MPTFC)策略,存在转矩脉动大、价值函数的权重系数整定困难、迭代计算量大以及共模电压(commonmode voltage,CMV)高等问题。为此,该文提出一种简化FCS-MPTFC策略。首先,建立五相PMSM在单相开路故障情况下的数学模型,并分析CMV产生的机理。其次,以抑制3次谐波电流的原则合成等幅值虚拟电压矢量(virtual voltage vector,V^(3)),并将转矩和磁链价值函数等效转化为电压价值函数,同时采用无差拍控制思想计算出参考电压矢量,进而通过合理划分扇区,直接获得最优V^(3)。最后,选择方向相反的两个基电压矢量代替零矢量,以减小开路故障下的CMV。仿真和实验结果表明:所提控制策略不仅能抑制单相开路故障导致的转矩脉动、降低计算负荷和CMV、抑制电流谐波,而且具有优良的稳态和动态性能。
文摘当参数失配时,永磁同步电机的显式模型预测(explicit model predictive,EMP)直接速度控制将出现明显的稳态静差。为此,现有方法通过配置扩张状态观测器(extended state observer,ESO)来实时观测和前馈补偿模型偏差,以实现无静差、高精度的转速跟随控制。但实验和理论分析表明,由于ESO的带宽有限,对于变化扰动的补偿能力较弱,参数失配时系统的动态性能恶化。为同时改善参数失配时系统的稳态控制精度和动态性能,并提高鲁棒性,该文将无模型控制与EMP控制进行融合,通过构造超局部预测模型和数据驱动观测器,提出新的EMP直接速度控制策略。实验结果表明:所提方法凭借数据驱动观测器的高观测带宽,可以同时在动态和稳态阶段实现参数失配的优良补偿,兼顾动态与稳态性能。