By using the proposed 3-D mode propagation analysis method and point-matching method, a polymer multimode interference (MMI) Mach-Zehnder interferometer (MZI) electro-optic (EO) switch is designed and optimized for en...By using the proposed 3-D mode propagation analysis method and point-matching method, a polymer multimode interference (MMI) Mach-Zehnder interferometer (MZI) electro-optic (EO) switch is designed and optimized for enhancing the EO modulating efficiency and matching the impedance and the velocity. The designed switch possesses low driving voltages of ±1.375 V with a short EO active region length of 5 mm under 1550 nm wavelength, and the estimated cutoff switching frequency is up to 263 GHz due to the less mismatch between the lightwave velocity and microwave velocity. The 3-dB lightwave bandwidth is 60 nm, and within the wavelength range of 1520-1580 nm, the insertion loss and crosstalk are less than 6.71 and -30 dB, respectively.展开更多
基金supported by the National Natural Science Foundation of China (No. 60706011)the Ministry of Education of China (Nos.20070183087 and 20090061110041)+1 种基金the Science and Technology Department of Jilin Province of China (No. 20080125)the Major StateBasic Research Development Program of China (No. 2006CB302803)
文摘By using the proposed 3-D mode propagation analysis method and point-matching method, a polymer multimode interference (MMI) Mach-Zehnder interferometer (MZI) electro-optic (EO) switch is designed and optimized for enhancing the EO modulating efficiency and matching the impedance and the velocity. The designed switch possesses low driving voltages of ±1.375 V with a short EO active region length of 5 mm under 1550 nm wavelength, and the estimated cutoff switching frequency is up to 263 GHz due to the less mismatch between the lightwave velocity and microwave velocity. The 3-dB lightwave bandwidth is 60 nm, and within the wavelength range of 1520-1580 nm, the insertion loss and crosstalk are less than 6.71 and -30 dB, respectively.