期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
基于子模式的完全二维主成分分析的步态识别算法 被引量:5
1
作者 王科俊 贲晛烨 +1 位作者 刘丽丽 李雪峰 《模式识别与人工智能》 EI CSCD 北大核心 2009年第6期854-861,共8页
提出一种基于子模式的完全二维主成分分析的步态识别算法.首先对步态能量图进行子块划分,自适应地去掉对分类无用的子块.然后分别对每个子图像采用完全二维主成分分析方法进行特征抽取.最后将各个子块的特征合为整体采用最近邻分类器来... 提出一种基于子模式的完全二维主成分分析的步态识别算法.首先对步态能量图进行子块划分,自适应地去掉对分类无用的子块.然后分别对每个子图像采用完全二维主成分分析方法进行特征抽取.最后将各个子块的特征合为整体采用最近邻分类器来测试识别.应用上述方法在CASIA步态数据库上进行实验,通过实验确定分块数目.实验结果表明本文算法明显好于完全二维主成分分析方法,不但有利于提取局部特征,而且对外套变化、背包,行走方向变化的步态识别也较有效. 展开更多
关键词 步态识别 步态能量图(GEI) 完全二维主成分分析(C2DPCA) 模式的完全二维主成分分析(SpC2DPCA)
原文传递
三维共形电磁粒子模拟技术研究 被引量:1
2
作者 王玥 李永东 +1 位作者 蒋铭 王洪广 《真空电子技术》 2019年第6期12-22,共11页
CEMPIC为基于面向对象的C++语言所研制的用于真空电子学器件设计与验证的电磁粒子模拟软件,通过MPI消息传递机制实现了区域分解后相邻计算区域之间的信息通讯,具备大规模高效并行计算能力。在前处理方面,CEMPIC软件基于开源的计算机辅... CEMPIC为基于面向对象的C++语言所研制的用于真空电子学器件设计与验证的电磁粒子模拟软件,通过MPI消息传递机制实现了区域分解后相邻计算区域之间的信息通讯,具备大规模高效并行计算能力。在前处理方面,CEMPIC软件基于开源的计算机辅助设计函数库OpenCascade实现了复杂几何模型的构建,并基于射线跟踪法实现了高效、准确的共形网格剖分。在核心算法方面,CEMPIC基于保辛格式的共形电磁电磁场算法,能够准确求解弯曲边界处的电磁场值,并在很大程度上消除了粒子模拟中数值上虚拟的Cherenkov辐射;采用了三步Boris积分法提高了求解描述粒子运动的Lorentz力方程的精度;采用了满足电荷守恒的高阶权重分配和插值算法,使得算法体系能够满足离散的Gauss定理;采用了高阶的数值滤波技术,减低了由权重分配算法所产生的数值噪声。为验证CEMPIC软件的算法体系的正确性、匹配性以及软件的计算能力,采用CEMPIC软件对典型的高功率微波器件进行了模拟计算和验证。 展开更多
关键词 粒子模拟 共形 辛积分 Boris推进 Cherenkov辐射 数值滤波 粒子轨迹跟踪 模式成分分析
下载PDF
Real-Time Face Tracking and Recognition in Video Sequence 被引量:3
3
作者 徐一华 贾云得 +1 位作者 刘万春 杨聪 《Journal of Beijing Institute of Technology》 EI CAS 2002年第2期203-207,共5页
A framework of real time face tracking and recognition is presented, which integrates skin color based tracking and PCA/BPNN (principle component analysis/back propagation neural network) hybrid recognition techni... A framework of real time face tracking and recognition is presented, which integrates skin color based tracking and PCA/BPNN (principle component analysis/back propagation neural network) hybrid recognition techniques. The algorithm is able to track the human face against a complex background and also works well when temporary occlusion occurs. We also obtain a very high recognition rate by averaging a number of samples over a long image sequence. The proposed approach has been successfully tested by many experiments, and can operate at 20 frames/s on an 800 MHz PC. 展开更多
关键词 face tracking pattern recognition skin color based eigenface/PCA artificial neural network
下载PDF
Construction of project quality health monitoring system based on life-cycle theory
4
作者 陈彦 成虎 +1 位作者 刘晶 戴洪军 《Journal of Southeast University(English Edition)》 EI CAS 2008年第4期508-512,共5页
In order to more effectively assess the health status of a project, the monitoring indices in a project's life cycle are divided into quality index, cost index, time index, satisfaction index, and sustainable develop... In order to more effectively assess the health status of a project, the monitoring indices in a project's life cycle are divided into quality index, cost index, time index, satisfaction index, and sustainable development index. Based on the feature of qualitative and quantitative indices combining, the PCA-PR (principal component analysis and pattern recognition) model is constructed. The model first analyzes the principal components of the life-cycle indices system constructed above, and picks up those principal component indices that can reflect the health status of a project at any time. Then the pattern recognition model is used to study these principal components, which means that the real time health status of the project can be divided into five lamps from a green lamp to a red one and the health status lamp of the project can be recognized by using the PR model and those principal components. Finally, the process is shown with a real example and a conclusion consistent with the actual situation is drawn. So the validity of the index system and the PCA-PR model can be confirmed. 展开更多
关键词 life-cycle theory principal component analysis (PCA) pattern recognition (PR) quality health monitoring
下载PDF
一种自适应加权SpPCA单样本人脸识别算法 被引量:3
5
作者 唐雨佳 周李威 +1 位作者 陈耿 朱玉全 《计算机应用研究》 CSCD 北大核心 2014年第9期2856-2858,2863,共4页
子模式主成分分析(SpPCA)算法忽略了人脸不同分块应该具有不同的重要性。为了解决此问题,提出一种自适应加权SpPCA单样本人脸识别算法,对人脸图像的不同分块自适应地计算其权重。算法对人脸进行分块,按照SpPCA算法将各个分块投影到特征... 子模式主成分分析(SpPCA)算法忽略了人脸不同分块应该具有不同的重要性。为了解决此问题,提出一种自适应加权SpPCA单样本人脸识别算法,对人脸图像的不同分块自适应地计算其权重。算法对人脸进行分块,按照SpPCA算法将各个分块投影到特征脸的基坐标上,并以每个模块LBP编码的纹理图像信息熵来表征该模块的权值;将模块的权重赋予该模块的特征脸投影,并得到最终分类结果。实验在Yale B和扩展Yale B人脸数据集上进行测试。实验表明,该算法得到了较好的识别结果,有效地弥补了SpPCA算法的不足。 展开更多
关键词 单样本 人脸识别 特征脸 模式成分分析 信息熵
下载PDF
Modeling and monitoring of nonlinear multi-mode processes based on similarity measure-KPCA 被引量:10
6
作者 WANG Xiao-gang HUANG Li-wei ZHANG Ying-wei 《Journal of Central South University》 SCIE EI CAS CSCD 2017年第3期665-674,共10页
A new modeling and monitoring approach for multi-mode processes is proposed.The method of similarity measure(SM) and kernel principal component analysis(KPCA) are integrated to construct SM-KPCA monitoring scheme,wher... A new modeling and monitoring approach for multi-mode processes is proposed.The method of similarity measure(SM) and kernel principal component analysis(KPCA) are integrated to construct SM-KPCA monitoring scheme,where SM method serves as the separation of common subspace and specific subspace.Compared with the traditional methods,the main contributions of this work are:1) SM consisted of two measures of distance and angle to accommodate process characters.The different monitoring effect involves putting on the different weight,which would simplify the monitoring model structure and enhance its reliability and robustness.2) The proposed method can be used to find faults by the common space and judge which mode the fault belongs to by the specific subspace.Results of algorithm analysis and fault detection experiments indicate the validity and practicability of the presented method. 展开更多
关键词 process monitoring kernel principal component analysis (KPCA) similarity measure subspace separation
下载PDF
Accelerated Matrix Recovery via Random Projection Based on Inexact Augmented Lagrange Multiplier Method 被引量:4
7
作者 王萍 张楚涵 +1 位作者 蔡思佳 李林昊 《Transactions of Tianjin University》 EI CAS 2013年第4期293-299,共7页
In this paper, a unified matrix recovery model was proposed for diverse corrupted matrices. Resulting from the separable structure of the proposed model, the convex optimization problem can be solved efficiently by ad... In this paper, a unified matrix recovery model was proposed for diverse corrupted matrices. Resulting from the separable structure of the proposed model, the convex optimization problem can be solved efficiently by adopting an inexact augmented Lagrange multiplier (IALM) method. Additionally, a random projection accelerated technique (IALM+RP) was adopted to improve the success rate. From the preliminary numerical comparisons, it was indicated that for the standard robust principal component analysis (PCA) problem, IALM+RP was at least two to six times faster than IALM with an insignificant reduction in accuracy; and for the outlier pursuit (OP) problem, IALM+RP was at least 6.9 times faster, even up to 8.3 times faster when the size of matrix was 2 000×2 000. 展开更多
关键词 matrix recovery random projection robust principal component analysis matrix completion outlier pursuit inexact augmented Lagrange multiplier method
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部