In order to improve the photocatalytic performance of mesoporous titania under visible light, a series of photocatalysts of S and Ag co-doped mesoporous titania have been successfully prepared by template method using...In order to improve the photocatalytic performance of mesoporous titania under visible light, a series of photocatalysts of S and Ag co-doped mesoporous titania have been successfully prepared by template method using thiourea, AgNO3 and tetrabutyl titanate as precursors and Pluronic P123 (EO20PO70EO20) as template. Scanning electron microscopy (SEM), X-ray diffraction (XRD), nitrogen adsorption-desorption measurements, and UV-visible spectroscopy (UV-Vis) were employed to characterize the morphology, crystal structure, surface structure, and optical absorption properties of the samples. The microcrystal of the photocatalysts consisted of anatase phase and was approximately present in the form of spherical particle. The photocatalytic performance was studied by photodegradation methyl orange (MO) in water under UV and visible light irradiation. The calcination temperature and the doping content influenced the photoactivity. In addition, the possibility of cyclic usage of co-doped mesoporous titania was also confirmed, the photocatalytic activity of mesoporous titania remained above 89% of that of the fresh sample after being used four times. It was shown that the co-doped mesoporous titania could be activated by visible light and could thus be potentially applied for the treatment of water contaminated by organic pollutants. The synergistic effect of sulfur and silver co-doping played an important role in improving the photocatalytic activity.展开更多
Nickel nanowire and nanotube arrays as supports for Pt-Pd catalyst were prepared by elec- troless deposition with anodic aluminum oxide template. Pt-Pd composite catalyst was de- posited on the arrays by displacement ...Nickel nanowire and nanotube arrays as supports for Pt-Pd catalyst were prepared by elec- troless deposition with anodic aluminum oxide template. Pt-Pd composite catalyst was de- posited on the arrays by displacement reaction. SEM images show that the nickel nanowires have an average diameter of I00 nm and the nickel nanotubes have an average inner diameter of 200 nm. EDS scanning reveals that elemental Pt and Pd disperse uniformly on the arrays. Cyclic voltammetry study indicates that the nickel nanotube array loaded with Pt-Pd pos- sesses a higher electrochemical activity for ethanol oxidation than the nickel nanowire array with Pt-Pd.展开更多
A ZSM-5/MOR co-crystalline zeolite was synthesized without using the template. The physico-chemical properties of the zeolite were characterized by XRD, FT-IR, SEM and TPD and then compared with the co-crystalline zeo...A ZSM-5/MOR co-crystalline zeolite was synthesized without using the template. The physico-chemical properties of the zeolite were characterized by XRD, FT-IR, SEM and TPD and then compared with the co-crystalline zeolite synthesized with a template. Analytical results indicated that they were similar in structure and composition. The influences ofpH value and Si/Al ratio on synthesis were studied. It was found that a high pH value or a low Si/AI ratio could provide better environment for mordenite (MOR) crystallization. The zeolites applied as catalysts in naphtha catalytic cracking for producing ethylene and propylene showed outstanding catalytic performance with the total yield of ethylene and propylene reaching 55 m%. The process could achieve most favorable efficiency when the catalyst contained 5 m% of MOR.展开更多
Doping heteroatoms into carbon matrix was an efficient strategy to achieve a high-performance non-precious metal oxygen reduction electrocatalyst. Herein, an in situ templated synthesis strategy has been demonstrated ...Doping heteroatoms into carbon matrix was an efficient strategy to achieve a high-performance non-precious metal oxygen reduction electrocatalyst. Herein, an in situ templated synthesis strategy has been demonstrated to fabricate nitrogen, sulfur and iron-tridoped mesoporous carbon nanosheets(NSFC) with FeCl3 as the two-dimensional template. And a protic salt was used as the carbon, nitrogen and sulfur source, which realized one-step preparation of catalyst materials and the co-doping of various heteroatoms simultaneously. As a result, the optimized NSFC catalyst possessed comparable catalytic activity and selectivity, while superior durability and methanol permeability resistance to commercial 30 wt% Pt/C catalyst in alkaline media. Such excellent performance should be ascribed to the efficient multiple-element doping into the large-specific-surface-area and highly stable carbon nanosheets realized by the in situ synthesis route with a novel FeCl3 template.展开更多
Well-aligned open-ended multi-walled carbon nanotube (MWCNT) arrays were prepared via chemical vapor deposition (CVD) method in porous anodic aluminum oxide (AAO) templates without depositing any transition meta...Well-aligned open-ended multi-walled carbon nanotube (MWCNT) arrays were prepared via chemical vapor deposition (CVD) method in porous anodic aluminum oxide (AAO) templates without depositing any transition metals as catalyst. Effects of the CVD temperature and heat treatment were studied in detail. Well-aligned open-ended MWCNT arrays were obtained at the CVD temperature above 600℃; when CVD temperature is reduced to around 550℃, CNTs, CNFs and other structures existed at the same time; no CNTs or carbon nanofibres (CNFs) could be fouad as the CVD temperature is below 500℃, and only amorphous carbon in the porous AAO template was found. Experimental results showed that the AAO template is catalytic during the CVD process, and it has the following two effects: to catalyze thermal decomposition of acetylene and to catalyze conversion of carbon decomposed from acetylene into CNTs or CNFs. Heat treatment could improve the graphitization degree, but it might also introduce new defects.展开更多
Herein is reported the soft-templating synthesis of visible-light photoactive bismuth ferrite (BiFeO3) nanoarchitectures in the form of thin fihns using a poly(ethylene-co-butylene)-block-poly(ethylene oxide) di...Herein is reported the soft-templating synthesis of visible-light photoactive bismuth ferrite (BiFeO3) nanoarchitectures in the form of thin fihns using a poly(ethylene-co-butylene)-block-poly(ethylene oxide) diblock copolymer as the structure-directing agent. We establish that (1) the self-assembled materials employed in this work are highly crystalline after annealing at 550 ℃ in air and that (2) neither the bismuth-poor Bi2Fe4O9 phase nor other impurity phases are formed. We further show that there is a distinct restructuring of the high quality cubic pore network of amorphous BiFeO3 during crystallization. This restructuring leads to films with a unique architecture that is composed of anisotropic crystallites intermingled with a continuous mesoporosity. While this article focuses on the characterization of these novel materials by electron microscopy, krypton physisorption, grazing incidence small-angle X-ray scattering, time-of-flight secondary ion mass spectrometry, X-ray photoelectron spectroscopy, UV-vis and Raman spectroscopy, we also examine the photocatalytic properties and show the benefits of the combination of mesoporosity and nanocrystallinity. Templated BiFeO3 thin films (25% porosity) with a direct optical band gap at 2.9 eV exhibit a catalytic activity for the degradation of rhodamine B much better than that of nontemplated samples. We attribute this improvement to the nanoscale porosity, which provides for more available active sites on the photocatalyst.展开更多
Improving charge carriers separation to achieve high photoconversion efficiency in heterogeneous photocatalysts is highly desirable.Herein,heterostructured ZnS@CdS double-layered porous nanotubes(PNTs),in which the sp...Improving charge carriers separation to achieve high photoconversion efficiency in heterogeneous photocatalysts is highly desirable.Herein,heterostructured ZnS@CdS double-layered porous nanotubes(PNTs),in which the spatially separated reduction and oxidation reaction sites lie on the outer and inner shell,respectively,are fabricated through a robust self-template conversion strategy.After selective photo-deposition of Ni and CoO_x as dual cocatalysts,Ni nanoparticles as electron collectors and reduction reaction sites are loaded on the outer shell,while CoO_x nanoparticles as hole collectors and oxidation reaction sites are loaded on the inner shells.As a result,a novel CoO_x/ZnS@CdS/Ni photocatalyst is obtained and shows high visible-light-driven photocatalytic hydrogen production activity owing to the synergistic effect of self-template-derived thin mesoporous heterojunctions and photo-depositionderived spatially separated dual cocatalysts,which can significantly provide driving force for the ordered transfer of photogenerated electrons and holes toward opposite direction and promote the surface catalytic reaction.Additionally,the facile strategy can be broadened to the preparation of CoO_x/ZnSe@CdSe/NiPNTs with enhanced photocatalytic activity.展开更多
Controlled synthesis of hierarchically assembled titanium dioxide (TiO2) nano- structures is important for practical applications in environmental purification and solar energy conversion. We present here the fabric...Controlled synthesis of hierarchically assembled titanium dioxide (TiO2) nano- structures is important for practical applications in environmental purification and solar energy conversion. We present here the fabrication of interconnected TiO2 nanotubes as a macroscopic bulk material by using a porous carbon nanotube (CNT) sponge as a template. The basic idea is to uniformly coat an amorphous titania layer onto the CNT surface by the infiltration of a TiO2 precursor into the sponge followed by a subsequent hydrolysis process. After calcination, the CNTs are completely removed and the titania is simultaneously crystallized, which results in a porous macrostructure composed of interconnected anatase TiO2 nanotubes. The TiO2 nanotube macrostructures show comparable photocatalytic activities to commercial products (AEROXIDE TiO2 P25) for the degradation of rhodamine B (RhB). Moreover, the TiO2 nanotube macrostructures can be settled and separated from water within 12 h after photocatalysis, whereas P25 remains suspended in solution after weeks. Thus the TiO2 nanotube macrostructures offer the advantage of easy catalyst separation and recycle and can be a promising candidate for wastewater treatment.展开更多
基金This work was supported by the National Natural Sci- ence Foundation of China (No.41373127) and the Liaoning Provincial Natural Science Foundation of China (No.2013020121).
文摘In order to improve the photocatalytic performance of mesoporous titania under visible light, a series of photocatalysts of S and Ag co-doped mesoporous titania have been successfully prepared by template method using thiourea, AgNO3 and tetrabutyl titanate as precursors and Pluronic P123 (EO20PO70EO20) as template. Scanning electron microscopy (SEM), X-ray diffraction (XRD), nitrogen adsorption-desorption measurements, and UV-visible spectroscopy (UV-Vis) were employed to characterize the morphology, crystal structure, surface structure, and optical absorption properties of the samples. The microcrystal of the photocatalysts consisted of anatase phase and was approximately present in the form of spherical particle. The photocatalytic performance was studied by photodegradation methyl orange (MO) in water under UV and visible light irradiation. The calcination temperature and the doping content influenced the photoactivity. In addition, the possibility of cyclic usage of co-doped mesoporous titania was also confirmed, the photocatalytic activity of mesoporous titania remained above 89% of that of the fresh sample after being used four times. It was shown that the co-doped mesoporous titania could be activated by visible light and could thus be potentially applied for the treatment of water contaminated by organic pollutants. The synergistic effect of sulfur and silver co-doping played an important role in improving the photocatalytic activity.
文摘Nickel nanowire and nanotube arrays as supports for Pt-Pd catalyst were prepared by elec- troless deposition with anodic aluminum oxide template. Pt-Pd composite catalyst was de- posited on the arrays by displacement reaction. SEM images show that the nickel nanowires have an average diameter of I00 nm and the nickel nanotubes have an average inner diameter of 200 nm. EDS scanning reveals that elemental Pt and Pd disperse uniformly on the arrays. Cyclic voltammetry study indicates that the nickel nanotube array loaded with Pt-Pd pos- sesses a higher electrochemical activity for ethanol oxidation than the nickel nanowire array with Pt-Pd.
基金funded by the National Basic Research Program of China (Project No. 2003CB615804) the joint funding of the National Natural Science Foundation of China and SINOPEC (NO.20736011)
文摘A ZSM-5/MOR co-crystalline zeolite was synthesized without using the template. The physico-chemical properties of the zeolite were characterized by XRD, FT-IR, SEM and TPD and then compared with the co-crystalline zeolite synthesized with a template. Analytical results indicated that they were similar in structure and composition. The influences ofpH value and Si/Al ratio on synthesis were studied. It was found that a high pH value or a low Si/AI ratio could provide better environment for mordenite (MOR) crystallization. The zeolites applied as catalysts in naphtha catalytic cracking for producing ethylene and propylene showed outstanding catalytic performance with the total yield of ethylene and propylene reaching 55 m%. The process could achieve most favorable efficiency when the catalyst contained 5 m% of MOR.
基金supported by the National Natural Science Foundation of China(21273114,21771107)Natural Science Foundation of Jiangsu Province(BK20161484)+3 种基金the Fundamental Research Funds for the Central Universities(NE2015003)the "Six Talent Peaks Program" of Jiangsu Province(2013-XNY-010)Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutionthe Foundation of Graduate Innovation Center in NUAA(kfjj20160613)~~
文摘Doping heteroatoms into carbon matrix was an efficient strategy to achieve a high-performance non-precious metal oxygen reduction electrocatalyst. Herein, an in situ templated synthesis strategy has been demonstrated to fabricate nitrogen, sulfur and iron-tridoped mesoporous carbon nanosheets(NSFC) with FeCl3 as the two-dimensional template. And a protic salt was used as the carbon, nitrogen and sulfur source, which realized one-step preparation of catalyst materials and the co-doping of various heteroatoms simultaneously. As a result, the optimized NSFC catalyst possessed comparable catalytic activity and selectivity, while superior durability and methanol permeability resistance to commercial 30 wt% Pt/C catalyst in alkaline media. Such excellent performance should be ascribed to the efficient multiple-element doping into the large-specific-surface-area and highly stable carbon nanosheets realized by the in situ synthesis route with a novel FeCl3 template.
基金This project was supported by the National High Technology Research and Development Program of China (863 Program, No. 2004AA302030) and Na- tional Natural Science Foundation of China (NSFC No. 60574095). Tests and analysis are supported by the United Foundation for Testing &: Analysis in Hefei, Chi- nese Academy of Sciences.
文摘Well-aligned open-ended multi-walled carbon nanotube (MWCNT) arrays were prepared via chemical vapor deposition (CVD) method in porous anodic aluminum oxide (AAO) templates without depositing any transition metals as catalyst. Effects of the CVD temperature and heat treatment were studied in detail. Well-aligned open-ended MWCNT arrays were obtained at the CVD temperature above 600℃; when CVD temperature is reduced to around 550℃, CNTs, CNFs and other structures existed at the same time; no CNTs or carbon nanofibres (CNFs) could be fouad as the CVD temperature is below 500℃, and only amorphous carbon in the porous AAO template was found. Experimental results showed that the AAO template is catalytic during the CVD process, and it has the following two effects: to catalyze thermal decomposition of acetylene and to catalyze conversion of carbon decomposed from acetylene into CNTs or CNFs. Heat treatment could improve the graphitization degree, but it might also introduce new defects.
文摘Herein is reported the soft-templating synthesis of visible-light photoactive bismuth ferrite (BiFeO3) nanoarchitectures in the form of thin fihns using a poly(ethylene-co-butylene)-block-poly(ethylene oxide) diblock copolymer as the structure-directing agent. We establish that (1) the self-assembled materials employed in this work are highly crystalline after annealing at 550 ℃ in air and that (2) neither the bismuth-poor Bi2Fe4O9 phase nor other impurity phases are formed. We further show that there is a distinct restructuring of the high quality cubic pore network of amorphous BiFeO3 during crystallization. This restructuring leads to films with a unique architecture that is composed of anisotropic crystallites intermingled with a continuous mesoporosity. While this article focuses on the characterization of these novel materials by electron microscopy, krypton physisorption, grazing incidence small-angle X-ray scattering, time-of-flight secondary ion mass spectrometry, X-ray photoelectron spectroscopy, UV-vis and Raman spectroscopy, we also examine the photocatalytic properties and show the benefits of the combination of mesoporosity and nanocrystallinity. Templated BiFeO3 thin films (25% porosity) with a direct optical band gap at 2.9 eV exhibit a catalytic activity for the degradation of rhodamine B much better than that of nontemplated samples. We attribute this improvement to the nanoscale porosity, which provides for more available active sites on the photocatalyst.
基金supported by the National Natural Science Foundation of China(21422104)the Natural Science Foundation of Tianjin City(17JCJQJC44700 and 16JCZDJC30600)
文摘Improving charge carriers separation to achieve high photoconversion efficiency in heterogeneous photocatalysts is highly desirable.Herein,heterostructured ZnS@CdS double-layered porous nanotubes(PNTs),in which the spatially separated reduction and oxidation reaction sites lie on the outer and inner shell,respectively,are fabricated through a robust self-template conversion strategy.After selective photo-deposition of Ni and CoO_x as dual cocatalysts,Ni nanoparticles as electron collectors and reduction reaction sites are loaded on the outer shell,while CoO_x nanoparticles as hole collectors and oxidation reaction sites are loaded on the inner shells.As a result,a novel CoO_x/ZnS@CdS/Ni photocatalyst is obtained and shows high visible-light-driven photocatalytic hydrogen production activity owing to the synergistic effect of self-template-derived thin mesoporous heterojunctions and photo-depositionderived spatially separated dual cocatalysts,which can significantly provide driving force for the ordered transfer of photogenerated electrons and holes toward opposite direction and promote the surface catalytic reaction.Additionally,the facile strategy can be broadened to the preparation of CoO_x/ZnSe@CdSe/NiPNTs with enhanced photocatalytic activity.
文摘Controlled synthesis of hierarchically assembled titanium dioxide (TiO2) nano- structures is important for practical applications in environmental purification and solar energy conversion. We present here the fabrication of interconnected TiO2 nanotubes as a macroscopic bulk material by using a porous carbon nanotube (CNT) sponge as a template. The basic idea is to uniformly coat an amorphous titania layer onto the CNT surface by the infiltration of a TiO2 precursor into the sponge followed by a subsequent hydrolysis process. After calcination, the CNTs are completely removed and the titania is simultaneously crystallized, which results in a porous macrostructure composed of interconnected anatase TiO2 nanotubes. The TiO2 nanotube macrostructures show comparable photocatalytic activities to commercial products (AEROXIDE TiO2 P25) for the degradation of rhodamine B (RhB). Moreover, the TiO2 nanotube macrostructures can be settled and separated from water within 12 h after photocatalysis, whereas P25 remains suspended in solution after weeks. Thus the TiO2 nanotube macrostructures offer the advantage of easy catalyst separation and recycle and can be a promising candidate for wastewater treatment.