The control of heat exchange stations in district heating system is critical for the overall energy efficiency and can be very difficult due to high level of complexity. A conventional method is to control the equipme...The control of heat exchange stations in district heating system is critical for the overall energy efficiency and can be very difficult due to high level of complexity. A conventional method is to control the equipment such that the temperature of hot water supply is maintained at a set-point that may be a fixed value or be compensated against the external temperature. This paper presents a novel scheme that can determine the optimal set-point of hot water supply that maximizes the energy efficiency whilst providing sufficient heating capacity to the load. This scheme is based on Adaptive Neuro-Fuzzy Inferential System. The aim of this study is to improve the overall performance of district heating systems.展开更多
Generally speaking, hydraulic control systems can be divided into two different driving concepts. The first one is the well-known hydraulic valve-controlled system and the second one is the pump-controlled system. The...Generally speaking, hydraulic control systems can be divided into two different driving concepts. The first one is the well-known hydraulic valve-controlled system and the second one is the pump-controlled system. The former possesses the feature of fast dynamic response. However, the poor energy-saving performance is its major fault. On the contrary, the hydraulic pump-controlled system has the significant advantage of energy-saving which meets the current demand in modem machine design. In this paper, the simulation analysis using MatLab/SimuLink and DSHplus software for a newly developed energy-saving hydraulic tube bender is conducted. Instead of the conventional fixed displacement hydraulic pump, the new hydraulic tube bender utilizes an internal gear pump with AC servomotor as its driving power source. In the new energy-saving hydraulic circuit, the use of conventional pressure relief valve and unloading valve are no longer necessary since the demanded flow-rate and pressure output can be precisely obtained by continuously changing the speed of the AC servomotor. In addition, two closed-loop control schemes using fuzzy sliding-mode controller are adopted and compared. To compare the energy-saving control systems, such as load-sensing control system, constant supply pressure control scheme and conventional hydraulic control scheme. Furthermore, the simulation results also show that the newly developed hydraulic tube bender can save up to 43% of energy consumption in a working cycle as compared to the conventional hydraulic tube bender.展开更多
文摘The control of heat exchange stations in district heating system is critical for the overall energy efficiency and can be very difficult due to high level of complexity. A conventional method is to control the equipment such that the temperature of hot water supply is maintained at a set-point that may be a fixed value or be compensated against the external temperature. This paper presents a novel scheme that can determine the optimal set-point of hot water supply that maximizes the energy efficiency whilst providing sufficient heating capacity to the load. This scheme is based on Adaptive Neuro-Fuzzy Inferential System. The aim of this study is to improve the overall performance of district heating systems.
文摘Generally speaking, hydraulic control systems can be divided into two different driving concepts. The first one is the well-known hydraulic valve-controlled system and the second one is the pump-controlled system. The former possesses the feature of fast dynamic response. However, the poor energy-saving performance is its major fault. On the contrary, the hydraulic pump-controlled system has the significant advantage of energy-saving which meets the current demand in modem machine design. In this paper, the simulation analysis using MatLab/SimuLink and DSHplus software for a newly developed energy-saving hydraulic tube bender is conducted. Instead of the conventional fixed displacement hydraulic pump, the new hydraulic tube bender utilizes an internal gear pump with AC servomotor as its driving power source. In the new energy-saving hydraulic circuit, the use of conventional pressure relief valve and unloading valve are no longer necessary since the demanded flow-rate and pressure output can be precisely obtained by continuously changing the speed of the AC servomotor. In addition, two closed-loop control schemes using fuzzy sliding-mode controller are adopted and compared. To compare the energy-saving control systems, such as load-sensing control system, constant supply pressure control scheme and conventional hydraulic control scheme. Furthermore, the simulation results also show that the newly developed hydraulic tube bender can save up to 43% of energy consumption in a working cycle as compared to the conventional hydraulic tube bender.