The student group possibilistic uncertainty in the van Hiele process of geometric reasoning is considered as the student group capacity for obtaining geometric information. Hence, the student group capacity for obtain...The student group possibilistic uncertainty in the van Hiele process of geometric reasoning is considered as the student group capacity for obtaining geometric information. Hence, the student group capacity for obtaining geometric information can be measured by the total possibilistic uncertainty T(r) of an ordered possibility distribution. The capacities of three student groups are found by calculating the total possibilistic uncertainties of these groups. These capacity values set an expectation of future group performance. Future research indications of how the total possibilistic uncertainty may be applied to other models of learning and development will help to establish it as a viable measure in educational psychology.展开更多
This paper concentrates on the problem of data redundancy under the extended-possibility-based model. Based on the information gain in data classification, a measure - relation redundancy - is proposed to evaluate the...This paper concentrates on the problem of data redundancy under the extended-possibility-based model. Based on the information gain in data classification, a measure - relation redundancy - is proposed to evaluate the degree of a given relation being redundant in whole. The properties of relation redundancy are also investigated. This new measure is useful in dealing with data redundancy.展开更多
Sensory data are, due to the lack of an absolute reference, imprecise and uncertain data. Fuzzy logic can handle uncertainty and can be used in approximate reasoning. Automatic learning procedures allow to generate fu...Sensory data are, due to the lack of an absolute reference, imprecise and uncertain data. Fuzzy logic can handle uncertainty and can be used in approximate reasoning. Automatic learning procedures allow to generate fuzzy reasoning rules from data including numerical and symbolic or sensory variables. We briefly present an induction method that was developed to extract qualitative knowledge from data samples. The induction process is run under interpretability constraints to ensure the fuzzy rules have a meaning for the human expert. We then study two applied problems in the food industry: sensory evaluation and process modeling.展开更多
Approximate entropy (ApEn), a measure quantifying regularity and complexity, is believed to be an effective analyzing method of diverse settings that include both deterministic chaotic and stochastic processes, partic...Approximate entropy (ApEn), a measure quantifying regularity and complexity, is believed to be an effective analyzing method of diverse settings that include both deterministic chaotic and stochastic processes, particularly operative in the analysis of physiological signals that involve relatively small amount of data. However, the similarity definition of vectors based on Heaviside function, of which the boundary is discontinuous and hard, may cause some problems in the validity and accuracy of ApEn. To overcome these problems, a modified ApEn based on fuzzy similarity (mApEn) was proposed. The performance on the MIX stochastic model, as well as those on the Logistic map and the Hennon map with noise, shows that the fuzzy similarity-based ApEn gets more satisfying results than the standard ApEn when characterizing systems with different regularities.展开更多
In this paper, the IHSL transform and the Fuzzy C-Means (FCM) segmentation algorithm are combined together to perform the unsupervised classification for fully polarimetric Synthetic Ap-erture Rader (SAR) data. We app...In this paper, the IHSL transform and the Fuzzy C-Means (FCM) segmentation algorithm are combined together to perform the unsupervised classification for fully polarimetric Synthetic Ap-erture Rader (SAR) data. We apply the IHSL colour transform to H/α/SPANspace to obtain a new space (RGB colour space) which has a uniform distinguishability among inner parameters and contains the whole polarimetric information in H/α/SPAN.Then the FCM algorithm is applied to this RGB space to finish the classification procedure. The main advantages of this method are that the parameters in the color space have similar interclass distinguishability, thus it can achieve a high performance in the pixel based segmentation algorithm, and since we can treat the parameters in the same way, the segmentation procedure can be simplified. The experiments show that it can provide an improved classification result compared with the method which uses the H/α/SPANspace di-rectly during the segmentation procedure.展开更多
文摘The student group possibilistic uncertainty in the van Hiele process of geometric reasoning is considered as the student group capacity for obtaining geometric information. Hence, the student group capacity for obtaining geometric information can be measured by the total possibilistic uncertainty T(r) of an ordered possibility distribution. The capacities of three student groups are found by calculating the total possibilistic uncertainties of these groups. These capacity values set an expectation of future group performance. Future research indications of how the total possibilistic uncertainty may be applied to other models of learning and development will help to establish it as a viable measure in educational psychology.
基金Supported by the National Natural Science Foundation of China(No.70231010/70321001)the Bilateral Scientific and Technological Cooperation between China and Flanders (No.174B0201)
文摘This paper concentrates on the problem of data redundancy under the extended-possibility-based model. Based on the information gain in data classification, a measure - relation redundancy - is proposed to evaluate the degree of a given relation being redundant in whole. The properties of relation redundancy are also investigated. This new measure is useful in dealing with data redundancy.
文摘Sensory data are, due to the lack of an absolute reference, imprecise and uncertain data. Fuzzy logic can handle uncertainty and can be used in approximate reasoning. Automatic learning procedures allow to generate fuzzy reasoning rules from data including numerical and symbolic or sensory variables. We briefly present an induction method that was developed to extract qualitative knowledge from data samples. The induction process is run under interpretability constraints to ensure the fuzzy rules have a meaning for the human expert. We then study two applied problems in the food industry: sensory evaluation and process modeling.
基金The National Basic Research Program (973)of China (No 2005CB724303)
文摘Approximate entropy (ApEn), a measure quantifying regularity and complexity, is believed to be an effective analyzing method of diverse settings that include both deterministic chaotic and stochastic processes, particularly operative in the analysis of physiological signals that involve relatively small amount of data. However, the similarity definition of vectors based on Heaviside function, of which the boundary is discontinuous and hard, may cause some problems in the validity and accuracy of ApEn. To overcome these problems, a modified ApEn based on fuzzy similarity (mApEn) was proposed. The performance on the MIX stochastic model, as well as those on the Logistic map and the Hennon map with noise, shows that the fuzzy similarity-based ApEn gets more satisfying results than the standard ApEn when characterizing systems with different regularities.
文摘In this paper, the IHSL transform and the Fuzzy C-Means (FCM) segmentation algorithm are combined together to perform the unsupervised classification for fully polarimetric Synthetic Ap-erture Rader (SAR) data. We apply the IHSL colour transform to H/α/SPANspace to obtain a new space (RGB colour space) which has a uniform distinguishability among inner parameters and contains the whole polarimetric information in H/α/SPAN.Then the FCM algorithm is applied to this RGB space to finish the classification procedure. The main advantages of this method are that the parameters in the color space have similar interclass distinguishability, thus it can achieve a high performance in the pixel based segmentation algorithm, and since we can treat the parameters in the same way, the segmentation procedure can be simplified. The experiments show that it can provide an improved classification result compared with the method which uses the H/α/SPANspace di-rectly during the segmentation procedure.