In this letter,Constructive Neural Networks (CNN) is used in large-scale data mining. By introducing the principle and characteristics of CNN and pointing out its deficiencies,fuzzy theory is adopted to improve the co...In this letter,Constructive Neural Networks (CNN) is used in large-scale data mining. By introducing the principle and characteristics of CNN and pointing out its deficiencies,fuzzy theory is adopted to improve the covering algorithms. The threshold of covering algorithms is redefined. "Extended area" for test samples is built. The inference of the outlier is eliminated. Furthermore,"Sphere Neighborhood (SN)" are constructed. The membership functions of test samples are given and all of the test samples are determined accordingly. The method is used to mine large wireless monitor data (about 3×107 data points),and knowledge is found effectively.展开更多
A novel fusion algorithm was given based on fuzzy similarity and fuzzy integral theory. First, it calculated the fuzzy similarity among a certain sensor's measurement values and the multiple sensors' objective predi...A novel fusion algorithm was given based on fuzzy similarity and fuzzy integral theory. First, it calculated the fuzzy similarity among a certain sensor's measurement values and the multiple sensors' objective prediction values to determine the importance weight of each sensor and realize multi-sensor data fusion. Then according to the determined importance weight, an intelligent fusion system based on fuzzy integral theory was given, which can solve FEI-DEO and DEI-DEO fusion problems and realize the decision fusion. Simulation results were proved that fuzzy integral algorithm has enhanced the capability of handling the uncertain information and improved the intelligence degrees展开更多
The rapid developments in the fields of telecommunication, sensor data, financial applications, analyzing of data streams, and so on, increase the rate of data arrival, among which the data mining technique is conside...The rapid developments in the fields of telecommunication, sensor data, financial applications, analyzing of data streams, and so on, increase the rate of data arrival, among which the data mining technique is considered a vital process. The data analysis process consists of different tasks, among which the data stream classification approaches face more challenges than the other commonly used techniques. Even though the classification is a continuous process, it requires a design that can adapt the classification model so as to adjust the concept change or the boundary change between the classes. Hence, we design a novel fuzzy classifier known as THRFuzzy to classify new incoming data streams. Rough set theory along with tangential holoentropy function helps in the designing the dynamic classification model. The classification approach uses kernel fuzzy c-means(FCM) clustering for the generation of the rules and tangential holoentropy function to update the membership function. The performance of the proposed THRFuzzy method is verified using three datasets, namely skin segmentation, localization, and breast cancer datasets, and the evaluated metrics, accuracy and time, comparing its performance with HRFuzzy and adaptive k-NN classifiers. The experimental results conclude that THRFuzzy classifier shows better classification results providing a maximum accuracy consuming a minimal time than the existing classifiers.展开更多
基金Supported by the National Natural Science Foundation of China (No.60135010)partially supported by the National Grand Fundamental Research 973 Program of China (No.G1998030509).
文摘In this letter,Constructive Neural Networks (CNN) is used in large-scale data mining. By introducing the principle and characteristics of CNN and pointing out its deficiencies,fuzzy theory is adopted to improve the covering algorithms. The threshold of covering algorithms is redefined. "Extended area" for test samples is built. The inference of the outlier is eliminated. Furthermore,"Sphere Neighborhood (SN)" are constructed. The membership functions of test samples are given and all of the test samples are determined accordingly. The method is used to mine large wireless monitor data (about 3×107 data points),and knowledge is found effectively.
基金Supported by the National Natural Science Foundation of China (50874059, 70971059) the Research Fund for the Doctoral Program of Higher Educa- tion of China (200801470003)
文摘A novel fusion algorithm was given based on fuzzy similarity and fuzzy integral theory. First, it calculated the fuzzy similarity among a certain sensor's measurement values and the multiple sensors' objective prediction values to determine the importance weight of each sensor and realize multi-sensor data fusion. Then according to the determined importance weight, an intelligent fusion system based on fuzzy integral theory was given, which can solve FEI-DEO and DEI-DEO fusion problems and realize the decision fusion. Simulation results were proved that fuzzy integral algorithm has enhanced the capability of handling the uncertain information and improved the intelligence degrees
基金supported by proposal No.OSD/BCUD/392/197 Board of Colleges and University Development,Savitribai Phule Pune University,Pune
文摘The rapid developments in the fields of telecommunication, sensor data, financial applications, analyzing of data streams, and so on, increase the rate of data arrival, among which the data mining technique is considered a vital process. The data analysis process consists of different tasks, among which the data stream classification approaches face more challenges than the other commonly used techniques. Even though the classification is a continuous process, it requires a design that can adapt the classification model so as to adjust the concept change or the boundary change between the classes. Hence, we design a novel fuzzy classifier known as THRFuzzy to classify new incoming data streams. Rough set theory along with tangential holoentropy function helps in the designing the dynamic classification model. The classification approach uses kernel fuzzy c-means(FCM) clustering for the generation of the rules and tangential holoentropy function to update the membership function. The performance of the proposed THRFuzzy method is verified using three datasets, namely skin segmentation, localization, and breast cancer datasets, and the evaluated metrics, accuracy and time, comparing its performance with HRFuzzy and adaptive k-NN classifiers. The experimental results conclude that THRFuzzy classifier shows better classification results providing a maximum accuracy consuming a minimal time than the existing classifiers.