A new type of vehicle routing problem (VRP), multiple vehicle routing problem integrated reverse logistics (MVRPRL), is studied. In this problem, there is delivery or pickup (or both) and uncertain features in t...A new type of vehicle routing problem (VRP), multiple vehicle routing problem integrated reverse logistics (MVRPRL), is studied. In this problem, there is delivery or pickup (or both) and uncertain features in the demands of the clients. The deliveries of every client as uncertain parameters are expressed as triangular fuzzy numbers. In order to describe MVRPRL, a multi-objective fuzzy programming model with credibility measure theory is constructed. Then the simulationbased tabu search algorithm combining inter-route and intra-route neighborhoods and embedded restarts are designed to solve it. Computational results show that the tabu search algorithm developed is superior to sweep algorithms and that compared with handling each on separate routes, the transportation costs can be reduced by 43% through combining pickups with deliveries.展开更多
The mining method optimization in subsea deep gold mines was studied. First, an index system for subsea mining method selection was established based on technical feasibility, security status, economic benefit, and ma...The mining method optimization in subsea deep gold mines was studied. First, an index system for subsea mining method selection was established based on technical feasibility, security status, economic benefit, and management complexity. Next, an evaluation matrix containing crisp numbers and triangular fuzzy numbers(TFNs) was constructed to describe quantitative and qualitative information simultaneously. Then, a hybrid model combining fuzzy theory and the Tomada de Decis?o Interativa Multicritério(TODIM) method was proposed. Finally, the feasibility of the proposed approach was validated by an illustrative example of selecting the optimal mining method in the Sanshandao Gold Mine(China). The robustness of this approach was demonstrated through a sensitivity analysis. The results show that the proposed hybrid TODIM method is reliable and stable for choosing the optimal mining method in subsea deep gold mines and provides references for mining method optimization in other similar undersea mines.展开更多
Despite of modern navigation devices, there are problems in navigation of vessels in waterways due to the geographical structures, disturbances in water, dynamic nature, and heavily environmental influenced sea traffi...Despite of modern navigation devices, there are problems in navigation of vessels in waterways due to the geographical structures, disturbances in water, dynamic nature, and heavily environmental influenced sea traffic. Even though all vessels are equipped with modern navigation devices, the accidents are reported caused by various reasons and mainly by human factor according to investigation. We propose an effective and efficient composition collision risk calculation method for finding the collision probability and avoiding the collision between ships in possible collision situations. The proposed composition collision risk calculation method at ship's position using combination of fuzzy and fuzzy comprehensive evaluation methods. The algorithm is straightforward to implement and is shown to be effective in automatic ship handling for ships involved in complex navigation situations. Experiments are carried out with indigenous data and the results show the effectiveness of the proposed approach.展开更多
Considering that the performance of a genetic algorithm (GA) is affected by many factors and their rela-tionships are complex and hard to be described,a novel fuzzy-based adaptive genetic algorithm (FAGA) combined...Considering that the performance of a genetic algorithm (GA) is affected by many factors and their rela-tionships are complex and hard to be described,a novel fuzzy-based adaptive genetic algorithm (FAGA) combined a new artificial immune system with fuzzy system theory is proposed due to the fact fuzzy theory can describe high complex problems.In FAGA,immune theory is used to improve the performance of selection operation.And,crossover probability and mutation probability are adjusted dynamically by fuzzy inferences,which are developed according to the heuristic fuzzy relationship between algorithm performances and control parameters.The experi-ments show that FAGA can efficiently overcome shortcomings of GA,i.e.,premature and slow,and obtain better results than two typical fuzzy GAs.Finally,FAGA was used for the parameters estimation of reaction kinetics model and the satisfactory result was obtained.展开更多
It is very difficult to estimate exact values of time and cost of an activity in project scheduling process because many uncertain factors, such as weather, productivity level, human factors etc. , dynamically affect ...It is very difficult to estimate exact values of time and cost of an activity in project scheduling process because many uncertain factors, such as weather, productivity level, human factors etc. , dynamically affect them during project implementation process. A GAs-based fully fuzzy optimal time-cost trade-off model is presented based on fuzzy sets and genetic algorithms (GAs). In tihs model all parameters and variables are characteristics by fuzzy numbers. And then GAs is adopted to search for the optimal solution to this model. The method solves the time-cost trade-off problems under an uncertain environment and is proved practicable through a giving example in ship building scheduling.展开更多
Condition assessment is one of the most significant techniques of the equipment’s health management.Also,in PHM methodology cycle,which is a developed form of CBM,condition assessment is the most important step of th...Condition assessment is one of the most significant techniques of the equipment’s health management.Also,in PHM methodology cycle,which is a developed form of CBM,condition assessment is the most important step of this cycle.In this paper,the remaining useful life of the equipment is calculated using the combination of sensor information,determination of degradation state and forecasting the proposed health index.The combination of sensor information has been carried out using a new approach to determining the probabilities in the Dempster-Shafer combination rules and fuzzy c-means clustering method.Using the simulation and forecasting of extracted vibration-based health index by autoregressive Markov regime switching(ARMRS)method,final health state is determined and the remaining useful life(RUL)is estimated.In order to evaluate the model,sensor data provided by FEMTO-ST Institute have been used.展开更多
The quantitative evaluation of errors involved in a particular numerical modelling is of prime importance for the effectiveness and reliability of the method. Errors in Distinct Element Modelling are generated mainly ...The quantitative evaluation of errors involved in a particular numerical modelling is of prime importance for the effectiveness and reliability of the method. Errors in Distinct Element Modelling are generated mainly through three resources as simplification of physical model, determination of parameters and boundary conditions. A measure of errors which represent the degree of numerical solution 'close to true value' is proposed through fuzzy probability in this paper. The main objective of this paper is to estimate the reliability of Distinct Element Method in rock engineering practice by varying the parameters and boundary conditions. The accumulation laws of standard errors induced by improper determination of parameters and boundary conditions are discussed in delails. Furthermore, numerical experiments are given to illustrate the estimation of fuzzy reliability. Example shows that fuzzy reliability falls between 75%-98% when the relative standard errors of input data is under 10 %.展开更多
In order to improve the strength and stiffness of shield cutterhead, the method of fuzzy mathematics theory in combination with the finite element analysis is adopted. An optimal design model of structural parameters ...In order to improve the strength and stiffness of shield cutterhead, the method of fuzzy mathematics theory in combination with the finite element analysis is adopted. An optimal design model of structural parameters for shield cutterhead is formulated,based on the complex engineering technical requirements. In the model, as the objective function of the model is a composite function of the strength and stiffness, the response surface method is applied to formulate the approximate function of objective function in order to reduce the solution scale of optimal problem. A multi-objective genetic algorithm is used to solve the cutterhead structure design problem and the change rule of the stress-strain with various structural parameters as well as their optimal values were researched under specific geological conditions. The results show that compared with original cutterhead structure scheme, the obtained optimal scheme of the cutterhead structure can greatly improve the strength and stiffness of the cutterhead, which can be seen from the reduction of its maximum equivalent stress by 21.2%, that of its maximum deformation by 0.75%, and that of its mass by 1.04%.展开更多
This paper firstly proposes a new support vector machine regression (SVR) with a robust loss function, and designs a gradient based algorithm for implementation of the SVR, then uses the SVR to extract fuzzy rules and...This paper firstly proposes a new support vector machine regression (SVR) with a robust loss function, and designs a gradient based algorithm for implementation of the SVR, then uses the SVR to extract fuzzy rules and designs fuzzy rule-based system. Simulations show that fuzzy rule-based system technique based on robust SVR achieves superior performance to the conventional fuzzy inference method, the proposed method provides satisfactory performance with excellent approximation and generalization property than the existing algorithm.展开更多
Cancelled the first axiom L1) or the third axiom L3) of the classical formal logic system we established two kinds of quasi-formal deductive system, LG-R^* and LG^* respectively. In LG-R^* we proved that neither the d...Cancelled the first axiom L1) or the third axiom L3) of the classical formal logic system we established two kinds of quasi-formal deductive system, LG-R^* and LG^* respectively. In LG-R^* we proved that neither the deduction theorem nor the hypothetical syllogism (HS) rule held but a deduction theorem and an HS rule are obtained in a weak sense. We also proved that both the deduction theorem and the hypothetical syllogism(HS) rule hold in LG^*.展开更多
In fuzzy set theory, instead of the underlying membership set being a two-valued set it is a multi-valued set that generally has the structure of a lattice L with a minimal element O and the maximal element I. Further...In fuzzy set theory, instead of the underlying membership set being a two-valued set it is a multi-valued set that generally has the structure of a lattice L with a minimal element O and the maximal element I. Furthermore if ∧, ∨, → and ┐ are defined in the set L, then we can use these operations to define, as in the ordinary set theory, operations on fuzzy subsets. In this paper we give a model of the Lattice-Valued Logic with set of agents. Any agents know the logic value of a sentence p. The logic value is compatible with all of the accessible conceptual models or worlds of p inside the agent. Agent can be rational or irrational in the use of the logic operation. Every agent of n agents can have the same set of conceptual models for p and know the same logic for p in this case the agents form a consistent group of agents. When agents have different conceptual models for p, different subgroup of agents know different logic value for p. In this case the n agents are inconsistent in the expression of the logic value for p. The valuation structure of set of agents can be used as a semantic model for the Lattice-valued Logic and fuzzy logic.展开更多
Memory chain is observed in a chaotic autoassociative neural network. The network recalls first stored pattern from a fragment of a memory, stays at this pattern for a while, transits to the second stored pattern that...Memory chain is observed in a chaotic autoassociative neural network. The network recalls first stored pattern from a fragment of a memory, stays at this pattern for a while, transits to the second stored pattern that overlaps with the first recalled pattern.Then it stays at the second recalled pattern for a while, transits to the third stored pattern that overlaps with the second recalled pattern, and so on. Thus a memory chain is generated. The memory chain ends with the pattern that overlaps no other stored patten. This phenomenon is similar to the way of recalling process of human beings in some respects.展开更多
In order to solve three kinds of fuzzy programm model, fuzzy chance-constrained programming mode ng models, i.e. fuzzy expected value and fuzzy dependent-chance programming model, a simultaneous perturbation stochast...In order to solve three kinds of fuzzy programm model, fuzzy chance-constrained programming mode ng models, i.e. fuzzy expected value and fuzzy dependent-chance programming model, a simultaneous perturbation stochastic approximation algorithm is proposed by integrating neural network with fuzzy simulation. At first, fuzzy simulation is used to generate a set of input-output data. Then a neural network is trained according to the set. Finally, the trained neural network is embedded in simultaneous perturbation stochastic approximation algorithm. Simultaneous perturbation stochastic approximation algorithm is used to search the optimal solution. Two numerical examples are presented to illustrate the effectiveness of the proposed algorithm.展开更多
Most supply chain programming problems are restricted to the deterministic situations or stochastic environmcnts. Considering twofold uncertainty combining grey and fuzzy factors, this paper proposes a hybrid uncertai...Most supply chain programming problems are restricted to the deterministic situations or stochastic environmcnts. Considering twofold uncertainty combining grey and fuzzy factors, this paper proposes a hybrid uncertain programming model to optimize the supply chain production-distribution cost. The programming parameters of the material suppliers, manufacturer, distribution centers, and the customers are integrated into the presented model. On the basis of the chance measure and the credibility of grey fuzzy variable, the grey fuzzy simulation methodology was proposed to generate input-output data for the uncertain functions. The designed neural network can expedite the simulation process after trained from the generated input-output data. The improved Particle Swarm Optimization (PSO) algorithm based on the Differential Evolution (DE) algorithm can optimize the uncertain programming problems. A numerical example was presented to highlight the significance of the uncertain model and the feasibility of the solution strategy.展开更多
基金The National Natural Science Foundation of China(No.70772059)Youth Science and Technology Innovation Foundation of Nanjing Agriculture University(No.KJ06029)
文摘A new type of vehicle routing problem (VRP), multiple vehicle routing problem integrated reverse logistics (MVRPRL), is studied. In this problem, there is delivery or pickup (or both) and uncertain features in the demands of the clients. The deliveries of every client as uncertain parameters are expressed as triangular fuzzy numbers. In order to describe MVRPRL, a multi-objective fuzzy programming model with credibility measure theory is constructed. Then the simulationbased tabu search algorithm combining inter-route and intra-route neighborhoods and embedded restarts are designed to solve it. Computational results show that the tabu search algorithm developed is superior to sweep algorithms and that compared with handling each on separate routes, the transportation costs can be reduced by 43% through combining pickups with deliveries.
基金Project(2018dcyj052) supported by Survey Research Funds of Central South University,ChinaProject(51774321) supported by the National Natural Science Foundation of ChinaProject(2018YFC0604606) supported by the National Key Research and Development Program of China
文摘The mining method optimization in subsea deep gold mines was studied. First, an index system for subsea mining method selection was established based on technical feasibility, security status, economic benefit, and management complexity. Next, an evaluation matrix containing crisp numbers and triangular fuzzy numbers(TFNs) was constructed to describe quantitative and qualitative information simultaneously. Then, a hybrid model combining fuzzy theory and the Tomada de Decis?o Interativa Multicritério(TODIM) method was proposed. Finally, the feasibility of the proposed approach was validated by an illustrative example of selecting the optimal mining method in the Sanshandao Gold Mine(China). The robustness of this approach was demonstrated through a sensitivity analysis. The results show that the proposed hybrid TODIM method is reliable and stable for choosing the optimal mining method in subsea deep gold mines and provides references for mining method optimization in other similar undersea mines.
基金supported by ETRI through Maritime Safety & Maritime Traffic Management R&D Program of the MOF/KIMST (2009403, Development of Next Generation VTS for Maritime Safety)supported by the National Research Foundation of Korea (NRF) Grant funded by the Korea government (MEST) (No. 2011-0015009)
文摘Despite of modern navigation devices, there are problems in navigation of vessels in waterways due to the geographical structures, disturbances in water, dynamic nature, and heavily environmental influenced sea traffic. Even though all vessels are equipped with modern navigation devices, the accidents are reported caused by various reasons and mainly by human factor according to investigation. We propose an effective and efficient composition collision risk calculation method for finding the collision probability and avoiding the collision between ships in possible collision situations. The proposed composition collision risk calculation method at ship's position using combination of fuzzy and fuzzy comprehensive evaluation methods. The algorithm is straightforward to implement and is shown to be effective in automatic ship handling for ships involved in complex navigation situations. Experiments are carried out with indigenous data and the results show the effectiveness of the proposed approach.
基金Supported by the National Natural Science Foundation of China(20776042) the National High Technology Research and Development Program of China(2007AA04Z164)+3 种基金 the Doctoral Fund of Ministry of Education of China(20090074110005) the Program for New Century Excellent Talents in University(NCET-09-0346) the"Shu Guang"Project(095G29) Shanghai Leading Academic Discipline Project(B504)
文摘Considering that the performance of a genetic algorithm (GA) is affected by many factors and their rela-tionships are complex and hard to be described,a novel fuzzy-based adaptive genetic algorithm (FAGA) combined a new artificial immune system with fuzzy system theory is proposed due to the fact fuzzy theory can describe high complex problems.In FAGA,immune theory is used to improve the performance of selection operation.And,crossover probability and mutation probability are adjusted dynamically by fuzzy inferences,which are developed according to the heuristic fuzzy relationship between algorithm performances and control parameters.The experi-ments show that FAGA can efficiently overcome shortcomings of GA,i.e.,premature and slow,and obtain better results than two typical fuzzy GAs.Finally,FAGA was used for the parameters estimation of reaction kinetics model and the satisfactory result was obtained.
基金Supported by the National High-Tech. R&D Program for CIMS (NO. 2003AA414060).
文摘It is very difficult to estimate exact values of time and cost of an activity in project scheduling process because many uncertain factors, such as weather, productivity level, human factors etc. , dynamically affect them during project implementation process. A GAs-based fully fuzzy optimal time-cost trade-off model is presented based on fuzzy sets and genetic algorithms (GAs). In tihs model all parameters and variables are characteristics by fuzzy numbers. And then GAs is adopted to search for the optimal solution to this model. The method solves the time-cost trade-off problems under an uncertain environment and is proved practicable through a giving example in ship building scheduling.
文摘Condition assessment is one of the most significant techniques of the equipment’s health management.Also,in PHM methodology cycle,which is a developed form of CBM,condition assessment is the most important step of this cycle.In this paper,the remaining useful life of the equipment is calculated using the combination of sensor information,determination of degradation state and forecasting the proposed health index.The combination of sensor information has been carried out using a new approach to determining the probabilities in the Dempster-Shafer combination rules and fuzzy c-means clustering method.Using the simulation and forecasting of extracted vibration-based health index by autoregressive Markov regime switching(ARMRS)method,final health state is determined and the remaining useful life(RUL)is estimated.In order to evaluate the model,sensor data provided by FEMTO-ST Institute have been used.
文摘The quantitative evaluation of errors involved in a particular numerical modelling is of prime importance for the effectiveness and reliability of the method. Errors in Distinct Element Modelling are generated mainly through three resources as simplification of physical model, determination of parameters and boundary conditions. A measure of errors which represent the degree of numerical solution 'close to true value' is proposed through fuzzy probability in this paper. The main objective of this paper is to estimate the reliability of Distinct Element Method in rock engineering practice by varying the parameters and boundary conditions. The accumulation laws of standard errors induced by improper determination of parameters and boundary conditions are discussed in delails. Furthermore, numerical experiments are given to illustrate the estimation of fuzzy reliability. Example shows that fuzzy reliability falls between 75%-98% when the relative standard errors of input data is under 10 %.
基金Project(51074180) supported by the National Natural Science Foundation of ChinaProject(2012AA041801) supported by the National High Technology Research and Development Program of China+2 种基金Project(2007CB714002) supported by the National Basic Research Program of ChinaProject(2013GK3003) supported by the Technology Support Plan of Hunan Province,ChinaProject(2010FJ1002) supported by Hunan Science and Technology Major Program,China
文摘In order to improve the strength and stiffness of shield cutterhead, the method of fuzzy mathematics theory in combination with the finite element analysis is adopted. An optimal design model of structural parameters for shield cutterhead is formulated,based on the complex engineering technical requirements. In the model, as the objective function of the model is a composite function of the strength and stiffness, the response surface method is applied to formulate the approximate function of objective function in order to reduce the solution scale of optimal problem. A multi-objective genetic algorithm is used to solve the cutterhead structure design problem and the change rule of the stress-strain with various structural parameters as well as their optimal values were researched under specific geological conditions. The results show that compared with original cutterhead structure scheme, the obtained optimal scheme of the cutterhead structure can greatly improve the strength and stiffness of the cutterhead, which can be seen from the reduction of its maximum equivalent stress by 21.2%, that of its maximum deformation by 0.75%, and that of its mass by 1.04%.
基金Supported by Zhejiang Province Nature Science Fund (No.Y106259)
文摘This paper firstly proposes a new support vector machine regression (SVR) with a robust loss function, and designs a gradient based algorithm for implementation of the SVR, then uses the SVR to extract fuzzy rules and designs fuzzy rule-based system. Simulations show that fuzzy rule-based system technique based on robust SVR achieves superior performance to the conventional fuzzy inference method, the proposed method provides satisfactory performance with excellent approximation and generalization property than the existing algorithm.
文摘Cancelled the first axiom L1) or the third axiom L3) of the classical formal logic system we established two kinds of quasi-formal deductive system, LG-R^* and LG^* respectively. In LG-R^* we proved that neither the deduction theorem nor the hypothetical syllogism (HS) rule held but a deduction theorem and an HS rule are obtained in a weak sense. We also proved that both the deduction theorem and the hypothetical syllogism(HS) rule hold in LG^*.
文摘In fuzzy set theory, instead of the underlying membership set being a two-valued set it is a multi-valued set that generally has the structure of a lattice L with a minimal element O and the maximal element I. Furthermore if ∧, ∨, → and ┐ are defined in the set L, then we can use these operations to define, as in the ordinary set theory, operations on fuzzy subsets. In this paper we give a model of the Lattice-Valued Logic with set of agents. Any agents know the logic value of a sentence p. The logic value is compatible with all of the accessible conceptual models or worlds of p inside the agent. Agent can be rational or irrational in the use of the logic operation. Every agent of n agents can have the same set of conceptual models for p and know the same logic for p in this case the agents form a consistent group of agents. When agents have different conceptual models for p, different subgroup of agents know different logic value for p. In this case the n agents are inconsistent in the expression of the logic value for p. The valuation structure of set of agents can be used as a semantic model for the Lattice-valued Logic and fuzzy logic.
文摘Memory chain is observed in a chaotic autoassociative neural network. The network recalls first stored pattern from a fragment of a memory, stays at this pattern for a while, transits to the second stored pattern that overlaps with the first recalled pattern.Then it stays at the second recalled pattern for a while, transits to the third stored pattern that overlaps with the second recalled pattern, and so on. Thus a memory chain is generated. The memory chain ends with the pattern that overlaps no other stored patten. This phenomenon is similar to the way of recalling process of human beings in some respects.
基金National Natural Science Foundation of China (No.70471049)China Postdoctoral Science Foundation (No. 20060400704)
文摘In order to solve three kinds of fuzzy programm model, fuzzy chance-constrained programming mode ng models, i.e. fuzzy expected value and fuzzy dependent-chance programming model, a simultaneous perturbation stochastic approximation algorithm is proposed by integrating neural network with fuzzy simulation. At first, fuzzy simulation is used to generate a set of input-output data. Then a neural network is trained according to the set. Finally, the trained neural network is embedded in simultaneous perturbation stochastic approximation algorithm. Simultaneous perturbation stochastic approximation algorithm is used to search the optimal solution. Two numerical examples are presented to illustrate the effectiveness of the proposed algorithm.
基金The Science and Research Foundation of Shanghai Municipal Education Commission (No06DZ033)the Doctoral Science and Research Foundation of Shanghai Nor mal University ( No PL719)the Science and Research Foundation of Shanghai Nor mal University (NoSK200741)
文摘Most supply chain programming problems are restricted to the deterministic situations or stochastic environmcnts. Considering twofold uncertainty combining grey and fuzzy factors, this paper proposes a hybrid uncertain programming model to optimize the supply chain production-distribution cost. The programming parameters of the material suppliers, manufacturer, distribution centers, and the customers are integrated into the presented model. On the basis of the chance measure and the credibility of grey fuzzy variable, the grey fuzzy simulation methodology was proposed to generate input-output data for the uncertain functions. The designed neural network can expedite the simulation process after trained from the generated input-output data. The improved Particle Swarm Optimization (PSO) algorithm based on the Differential Evolution (DE) algorithm can optimize the uncertain programming problems. A numerical example was presented to highlight the significance of the uncertain model and the feasibility of the solution strategy.