期刊文献+
共找到207篇文章
< 1 2 11 >
每页显示 20 50 100
基于高斯核函数的差分隐私模糊C均值聚类算法的构建与应用 被引量:1
1
作者 曹自雄 陈宇鲜 蒋秀梅 《中国医学装备》 2024年第8期106-112,共7页
目的:提出一种基于高斯核函数的差分隐私模糊C均值聚类算法(DPFCM_GF),旨在优化大数据背景下医疗数据分析和挖掘带来的数据隐私安全问题,为数据隐私保护提供理论基础。方法:针对随机初始化模糊C-均值隶属度矩阵降低算法精度问题,采用最... 目的:提出一种基于高斯核函数的差分隐私模糊C均值聚类算法(DPFCM_GF),旨在优化大数据背景下医疗数据分析和挖掘带来的数据隐私安全问题,为数据隐私保护提供理论基础。方法:针对随机初始化模糊C-均值隶属度矩阵降低算法精度问题,采用最大距离法确定初始中心点,使用聚类中心点的高斯值计算隐私预算分配比率,并添加拉普拉斯噪声以完成差分隐私保护,构建DPFCM_GF。收集整理美国加州大学欧文分校机器学习存储库的心脏病、乳腺癌、甲状腺疾病及糖尿病公开数据集对DPFCM_GF有效性进行验证,收集2019年1月1日至2022年12月31日淮安市第二人民医院收治的756例胃癌和肺癌患者病例数据集,对DPFCM_GF的可用性进行验证,并将分析结果与模糊C均值聚类算法(FCM)以及差分隐私模糊C均值聚类算法(DPFCM)进行对比分析。结果:对于心脏病、乳腺癌、甲状腺疾病及糖尿病公开数据集,DPFCM_GF和DPFCM的最优聚类效果与FCM聚类效果相当;相较于DPFCM,DPFCM_GF迭代时间更快,聚集速度显著,差异有统计学意义(t=4.01、4.71、4.01、12.38,P<0.05)。对于肺癌和胃癌数据集,随着隐私预算ε的增大,DPFCM_GF正确识别率逐渐聚集于91.9%和93.9%,受试者工作特征(ROC)曲线下面积(AUC)值分别为0.79和0.81;当隐私函数ε为0.1、0.5、1和2(ε<3)时,DPFCM_GF聚类效果显著优于DPFCM,且聚类效果更佳,差异有统计学意义(χ^(2)=12.25、87.12、68.58、7.76,P<0.05;χ^(2)=4.74、43.51、42.47、4.89,P<0.05)。结论:DPFCM_GF是一种有效保护医疗数据隐私的方法,同时也可进行数据分析和挖掘任务,具有一定的研究意义和研究前景。 展开更多
关键词 数据隐私 差分隐私 模糊c均值聚类算法 高斯核函数 数据挖掘 隐私预算
下载PDF
基于模糊C均值聚类算法的浆液循环泵节能运行优化方法研究
2
作者 闫庚 《自动化应用》 2024年第14期175-177,共3页
在浆液循环泵运行阶段,受客观应用需求波动的影响,其功耗相对较高。为此,提出基于模糊C均值聚类算法的浆液循环泵节能运行优化方法。在浆液循环泵运行数据特征提取阶段,采用基于无监督的深度学习模型,借助随机初始化的卷积核,对输入的... 在浆液循环泵运行阶段,受客观应用需求波动的影响,其功耗相对较高。为此,提出基于模糊C均值聚类算法的浆液循环泵节能运行优化方法。在浆液循环泵运行数据特征提取阶段,采用基于无监督的深度学习模型,借助随机初始化的卷积核,对输入的数据进行卷积计算,获取低维空间的特征映射,随后通过反卷积确定浆液循环泵运行参数特征;在节能运行优化阶段,引入模糊C均值聚类算法,通过聚类具有相同特征的数据,将相同聚类内功耗最小的参数作为同类运行工况下的优化结果。结果显示,测试循环泵的功耗虽然会随着通过的最大颗粒粒度的增加而呈稳定增大的趋势,但对应的增幅较小,与对照组相比,其分别在节能程度和节能适应性方面表现出了明显优势。 展开更多
关键词 模糊c均值聚类算法 浆液循环泵 深度学习模型 特征提取
下载PDF
基于EEMD和模糊C均值聚类算法诊断发动机曲轴轴承故障 被引量:36
3
作者 张玲玲 廖红云 +2 位作者 曹亚娟 骆诗定 赵懿冠 《内燃机学报》 EI CAS CSCD 北大核心 2011年第4期332-336,共5页
针对发动机振动信号的非平稳性以及特征参数的模糊性特点,提出了一种基于集合经验模态分解(Ensemble Empirical Mode Decomposition,EEMD)和模糊C均值聚类(Fuzzy Center Mean,FCM)的故障诊断方法,通过对已知故障样本信号进行EEMD分解,... 针对发动机振动信号的非平稳性以及特征参数的模糊性特点,提出了一种基于集合经验模态分解(Ensemble Empirical Mode Decomposition,EEMD)和模糊C均值聚类(Fuzzy Center Mean,FCM)的故障诊断方法,通过对已知故障样本信号进行EEMD分解,形成初始特征向量矩阵;对该矩阵进行奇异值分解,将矩阵的奇异值组成故障特征向量,标准化后作为FCM的输入,得到分类矩阵和聚类中心;最后通过计算待测故障样本与已知故障样本聚类中心的贴近度实现故障模式识别.故障诊断实例表明,该方法能有效地诊断柴油机曲轴轴承故障. 展开更多
关键词 模糊c均值聚类算法 奇异值分解 经验模式分解 故障诊断 曲轴轴承
下载PDF
基于模糊C均值聚类算法和贝叶斯判别函数研究深水油藏分类评价 被引量:14
4
作者 丁帅伟 姜汉桥 +2 位作者 陈民锋 罗银富 汤国平 《西安石油大学学报(自然科学版)》 CAS 北大核心 2014年第2期43-49,8-9,共7页
针对目前深水油藏分类评价研究现状的不足,基于模糊C均值聚类算法和贝叶斯判别函数,建立了深水油藏指标选择标准和分类评价体系。优选世界三大深水油气区19例油田的特征属性参数作为典型样品集,采用模糊聚类分析对深水油藏进行了分类,... 针对目前深水油藏分类评价研究现状的不足,基于模糊C均值聚类算法和贝叶斯判别函数,建立了深水油藏指标选择标准和分类评价体系。优选世界三大深水油气区19例油田的特征属性参数作为典型样品集,采用模糊聚类分析对深水油藏进行了分类,在此基础上,应用贝叶斯判别决策理论,建立了深水油藏分类评价的定量判别关系,对未知类型的深水油藏进行了定量分类评价。实例结果表明,应用模糊C均值聚类算法和贝叶斯判别函数相结合进行深水油藏分类评价是有效的,该分类评价体系考虑的油藏参数更为全面,分类结果更为明显,对于深水油田的开发具有一定的指导意义。 展开更多
关键词 深水油藏 油藏分评价 模糊c均值聚类算法 贝叶斯判别函数
下载PDF
基于多目标规划的模糊C均值聚类算法 被引量:8
5
作者 王丹丹 李彬 陈武凡 《中国图象图形学报》 CSCD 北大核心 2008年第8期1492-1495,共4页
模糊C均值聚类算法(FCM)是一种非常经典的非监督聚类技术,已被广泛地应用到医学图像分割。由于传统的FCM聚类算法在分割图像时仅利用了图像的灰度信息,未利用图像的空间信息,在分割叠加了噪声的磁共振(MR)图像时分割效果不理想。考虑到... 模糊C均值聚类算法(FCM)是一种非常经典的非监督聚类技术,已被广泛地应用到医学图像分割。由于传统的FCM聚类算法在分割图像时仅利用了图像的灰度信息,未利用图像的空间信息,在分割叠加了噪声的磁共振(MR)图像时分割效果不理想。考虑到脑部MR图像真实的灰度值具有分片为常数的特性,按照合理利用图像空间信息的原则,对传统的FCM聚类算法进行了改进,引入多目标规划的概念,提出了一种新的,更加合理的应用图像空间信息的聚类算法。实验结果表明,应用该算法可以有效地分割含有噪声的图像。 展开更多
关键词 图像分割 模糊c均值聚类算法 多目标规划 图像的空间信息
下载PDF
基于隶属度光滑约束的模糊C均值聚类算法 被引量:6
6
作者 李彬 陈武凡 颜刚 《中国图象图形学报》 CSCD 北大核心 2007年第4期623-627,共5页
传统的FCM聚类算法未利用图像的空间信息,在分割叠加了噪声的MR图像时分割效果不理想。本文考虑到脑部MR图像真实的灰度值具有分片为常数的特性,按照合理利用图像空间信息的原则,对传统的FCM聚类算法进行了改进,增加了使隶属度趋向于分... 传统的FCM聚类算法未利用图像的空间信息,在分割叠加了噪声的MR图像时分割效果不理想。本文考虑到脑部MR图像真实的灰度值具有分片为常数的特性,按照合理利用图像空间信息的原则,对传统的FCM聚类算法进行了改进,增加了使隶属度趋向于分片光滑的约束项,得到了新的聚类算法。通过对模拟脑部MR图像和临床脑部MR图像的分割实验结果表明,本文提出的新算法比传统的FCM算法等多种图像分割算法有更精确的图像分割能力,并且运算简单、运算速度快、稳健性好。 展开更多
关键词 图像分割 模糊c均值聚类算法 隶属度光滑约束 图像的空间信息
下载PDF
利用空间信息的核模糊C均值聚类算法 被引量:3
7
作者 王丹丹 李彬 陈武凡 《计算机工程与应用》 CSCD 北大核心 2007年第33期82-83,111,共3页
模糊聚类,特别是模糊C均值聚类算法(FCM)广泛地运用到图像的分割中。但是传统的算法未对数据对特征进行优化,亦未考虑图像的空间信息,对噪声图像分割不理想。在FCM目标函数中引入核函数,用内核引导距离代替传统的欧式距离,同时考虑到邻... 模糊聚类,特别是模糊C均值聚类算法(FCM)广泛地运用到图像的分割中。但是传统的算法未对数据对特征进行优化,亦未考虑图像的空间信息,对噪声图像分割不理想。在FCM目标函数中引入核函数,用内核引导距离代替传统的欧式距离,同时考虑到邻近象素的影响,增加了空间约束项,提出了利用空间信息的核FCM算法。通过对模拟图和仿真脑部MR图像的分割实验证明,该算法可以有效的分割含有噪声图像。 展开更多
关键词 图像分割 核方法 模糊c均值聚类算法 图像的空间信息
下载PDF
改进的模糊C均值聚类算法和霍夫变换在榛子仁缺陷检测中的应用 被引量:2
8
作者 张冬妍 张瑞 +1 位作者 韩睿 曹军 《东北林业大学学报》 CAS CSCD 北大核心 2021年第6期80-83,95,共5页
以榛子仁为检测样本,采用模糊C均值聚类(FCM)算法进行图像分割;利用飞蛾扑火(MFO)算法改进其目标函数;利用函数对个体样本边缘提取,标记边缘拐点位置,计算拐点个数;对边缘图像进行霍夫(Hough)变换的椭圆曲线拟合,标记并输出饱满籽粒个数... 以榛子仁为检测样本,采用模糊C均值聚类(FCM)算法进行图像分割;利用飞蛾扑火(MFO)算法改进其目标函数;利用函数对个体样本边缘提取,标记边缘拐点位置,计算拐点个数;对边缘图像进行霍夫(Hough)变换的椭圆曲线拟合,标记并输出饱满籽粒个数;依据试验数据,分析应用改进的模糊C均值聚类算法和霍夫变换对榛子仁缺陷检测的效果。结果表明:改进的模糊C均值聚类算法和霍夫变换,可以准确有效地对饱满、干瘪、霉斑、虫蛀、腐烂的5种榛子仁中的缺陷籽粒进行识别检测,提高榛子仁加工过程中的分拣效率。 展开更多
关键词 榛子仁 缺陷检测 改进模糊c均值聚类算法 图像分割 霍夫变换
下载PDF
一种新的模糊C均值聚类算法 被引量:3
9
作者 李翠霞 谭营军 《河南大学学报(自然科学版)》 CAS 北大核心 2011年第2期201-205,共5页
传统的模糊C均值聚类算法及其变型在聚类过程中都假设所有的属性对聚类贡献相同,所以很难发现隐藏在部分属性中的类结构,也难以识别出重要属性.在实际应用中,噪声属性较为常见,并且会影响正常的聚类过程.鉴于以上原因,提出了一种新的基... 传统的模糊C均值聚类算法及其变型在聚类过程中都假设所有的属性对聚类贡献相同,所以很难发现隐藏在部分属性中的类结构,也难以识别出重要属性.在实际应用中,噪声属性较为常见,并且会影响正常的聚类过程.鉴于以上原因,提出了一种新的基于属性加权的模糊C均值聚类算法,通过对人工数据和实际数据的聚类测试结果,证实了该算法的有效性. 展开更多
关键词 权值 属性加权 模糊指数 模糊c均值聚类算法
下载PDF
基于LMD和模糊C均值聚类算法的发动机连杆轴承故障诊断 被引量:2
10
作者 王国威 常春 +2 位作者 曾锐利 杨青乐 张阳光 《军事交通学院学报》 2014年第9期31-35,共5页
针对发动机振动信号的非平稳性以及特征参数的模糊性特点,提出局域均值分解(LMD)和模糊C均值(FCM)聚类相结合的故障诊断方法,对发动机机械故障进行特征提取和模式识别。通过对已知故障样本信号进行LMD分解,形成初始特征向量矩阵;对该矩... 针对发动机振动信号的非平稳性以及特征参数的模糊性特点,提出局域均值分解(LMD)和模糊C均值(FCM)聚类相结合的故障诊断方法,对发动机机械故障进行特征提取和模式识别。通过对已知故障样本信号进行LMD分解,形成初始特征向量矩阵;对该矩阵进行奇异值分解(SVD),将矩阵的奇异值组成故障特征向量,归一化处理后作为FCM的输入参数,得到分类矩阵和聚类中心;最后,通过计算待测故障样本与已知故障样本聚类中心的贴近度实现故障模式识别。故障诊断实验表明,该方法能有效地诊断柴油机连杆轴承故障。 展开更多
关键词 局域均值分解 奇异值分解 模糊c均值聚类算法 故障诊断
下载PDF
基于网格和密度权值的模糊c均值聚类算法 被引量:1
11
作者 邱保志 卢海艇 《计算机工程与设计》 CSCD 北大核心 2010年第4期822-824,共3页
改进了基于网格和密度的模糊c均值聚类初始化方法,提出了基于网格和密度权值的模糊c均值算法。该算法在参数初始化时用网格代表点代替原算法的网格凝聚点,同时考虑到在样本空间中处于不同位置的样本点对聚类的影响不同,把密度权值作为... 改进了基于网格和密度的模糊c均值聚类初始化方法,提出了基于网格和密度权值的模糊c均值算法。该算法在参数初始化时用网格代表点代替原算法的网格凝聚点,同时考虑到在样本空间中处于不同位置的样本点对聚类的影响不同,把密度权值作为系数加入到模糊c均值聚类算法中。实验结果表明,提出的算法对提高算法的效率是有效的。 展开更多
关键词 模糊c均值聚类算法 代表点 密度权值 GDWFcM GDFcM
下载PDF
模糊C均值聚类算法在自动供送装置改进设计中的应用 被引量:1
12
作者 魏娜 辛向阳 《机械设计》 CSCD 北大核心 2016年第12期105-108,共4页
为进一步减轻工人劳动强度,使供送装置的供送参数(如供送高度、供送距离等)设计更符合工人实际操作行为习惯,针对用户的需求差异,采用模糊C均值聚类算法,将目标人群的相关特征参数进行分类,根据聚类结果对相关供送参数进行改进,以达到... 为进一步减轻工人劳动强度,使供送装置的供送参数(如供送高度、供送距离等)设计更符合工人实际操作行为习惯,针对用户的需求差异,采用模糊C均值聚类算法,将目标人群的相关特征参数进行分类,根据聚类结果对相关供送参数进行改进,以达到更好的供送效果;以涡流纺细纱机中的纱筒供送装置为例,结合女操作工的身高特征参数,对纱筒供送高度进行改进,提出两个供送高度的设计方案,对减轻工人劳动强度均有较为明显的效果。采用模糊C均值聚类算法进行聚类分析可为供送装置的相关供送参数改进提供有效途径。 展开更多
关键词 工业设计 自动供送装置 模糊c均值聚类算法 人机工程 改进设计 涡流坊细纱机
原文传递
基于模糊c均值聚类算法的控制图模式识别 被引量:4
13
作者 张和平 李俊武 《工业工程》 北大核心 2021年第5期108-116,共9页
控制图模式识别能够区分制造过程中的一般因素与异常因素,提高制造过程中的产品质量,减少成本,提高效益。利用蒙特卡洛方法产生样本;采用一维离散小波变换处理原始数据;利用模糊c均值聚类算法进行控制图模式识别。识别准确率99.43%,其... 控制图模式识别能够区分制造过程中的一般因素与异常因素,提高制造过程中的产品质量,减少成本,提高效益。利用蒙特卡洛方法产生样本;采用一维离散小波变换处理原始数据;利用模糊c均值聚类算法进行控制图模式识别。识别准确率99.43%,其标准差为0.002 8。这表明基于该方法的控制图模式识别准确率高,稳定性好,较现有的控制图模式识别方法具有简易、高效等特点。 展开更多
关键词 控制图模式识别 模糊c均值聚类算法 小波变换
下载PDF
模糊C均值聚类算法的改进研究 被引量:1
14
作者 贾丙静 王传安 宋雪亚 《淮阴师范学院学报(自然科学版)》 CAS 2011年第3期226-229,共4页
模糊C均值聚类算法(FCM)是一种比较有代表性的模糊聚类算法,主要是通过迭代更新聚类中心和隶属度矩阵,使目标函数值达到最小.FCM算法还有很多缺陷和不足,其中最主要的就是选取不同的初始中心,会得到不同的聚类结果,影响到聚类的稳定性... 模糊C均值聚类算法(FCM)是一种比较有代表性的模糊聚类算法,主要是通过迭代更新聚类中心和隶属度矩阵,使目标函数值达到最小.FCM算法还有很多缺陷和不足,其中最主要的就是选取不同的初始中心,会得到不同的聚类结果,影响到聚类的稳定性和准确率.本文对要聚类的数据集采用数据分区技术进行预处理,根据物质质心的定义及质心运动原理,计算每个数据分区的质心做为FCM聚类的初始聚类中心.实验结果表明,改进后的算法FCM能够降低迭代次数和运行时间,得到比较稳定的聚类结果. 展开更多
关键词 模糊c均值聚类算法 数据分区 质心
下载PDF
基于显著性检测与模糊C均值聚类算法的叶片病斑区域提取方法 被引量:1
15
作者 郭三华 《江苏农业科学》 北大核心 2017年第22期236-239,共4页
针对自然场景下获取的叶片病斑图像,提出利用图像显著性检测与模糊C均值聚类方法相结合的叶片病斑区域提取方法。首先,利用SLIC(simple linear iterative clustering)方法结合马尔科夫吸收链进行图像显著性检测,获取显著图,实现符合视... 针对自然场景下获取的叶片病斑图像,提出利用图像显著性检测与模糊C均值聚类方法相结合的叶片病斑区域提取方法。首先,利用SLIC(simple linear iterative clustering)方法结合马尔科夫吸收链进行图像显著性检测,获取显著图,实现符合视觉特征的显著区域检测;其次,利用模糊C均值聚类算法对显著图进行分割,进而获取二值化后的叶斑图像;最后,结合原始图像获取最终叶片病斑区域。试验结果表明,叶片病斑区域提取比较准确,满足病斑进一步处理和分析的要求。 展开更多
关键词 自然场景 叶片病斑 显著性检测 模糊c均值聚类算法 区域提取
下载PDF
基于粒子群优化的模糊C均值聚类算法 被引量:3
16
作者 王宇钢 《信息技术与网络安全》 2018年第8期36-39,44,共5页
针对模糊C均值聚类算法(FCM)存在对初始聚类中心敏感,易陷入局部最优解的不足,将改进的粒子群聚类算法与FCM算法相结合,提出了一种基于粒子群优化的模糊C均值聚类算法。该算法对粒子群初始化空间及粒子移动最大速度进行优化,同时引入环... 针对模糊C均值聚类算法(FCM)存在对初始聚类中心敏感,易陷入局部最优解的不足,将改进的粒子群聚类算法与FCM算法相结合,提出了一种基于粒子群优化的模糊C均值聚类算法。该算法对粒子群初始化空间及粒子移动最大速度进行优化,同时引入环形拓扑结构邻域,提高粒子群聚类算法的全局搜索能力。对UCI中3个数据集进行仿真实验,结果表明提出的基于粒子群优化的模糊C均值聚类算法相比FCM算法和基本粒子群聚类算法具有更好的聚类效率和准确性。 展开更多
关键词 粒子群优化 模糊c均值聚类算法 粒子群算法
下载PDF
基于模糊C均值聚类算法的海洋环境监测研究 被引量:3
17
作者 张彦军 张姗姗 《工业仪表与自动化装置》 2017年第6期3-6,共4页
该文将模糊C均值聚类算法(FCM)应用到海洋环境监测数据的挖掘中。应用数据预处理算法,对莱州湾海域的历史海洋数据包括p H值、温度、溶解氧浓度等进行处理;应用FCM算法对不同海域的数据进行聚类,以此获得相近海域的数据特征;将该算法应... 该文将模糊C均值聚类算法(FCM)应用到海洋环境监测数据的挖掘中。应用数据预处理算法,对莱州湾海域的历史海洋数据包括p H值、温度、溶解氧浓度等进行处理;应用FCM算法对不同海域的数据进行聚类,以此获得相近海域的数据特征;将该算法应用到海水污染预警中,用于区分污染和未污染海水样本。实测结果表明了算法的有效性,为海水污染预警提供了一种新的思路。 展开更多
关键词 模糊c均值聚类算法 海洋环境 数据预处理算法
下载PDF
改进的模糊C均值聚类算法及其在海底热液硫化物组分分析中的应用 被引量:4
18
作者 田赤英 张旭男 +2 位作者 宋士吉 李家彪 李小虎 《海洋学研究》 2010年第4期22-28,共7页
在聚类分析中,模糊C均值(FCM)聚类算法有着广泛的应用。在实际应用中,该算法存在着很多缺陷,如最优聚类数目的确定完全依赖于数据的数目,算法易收敛到局部极值点以及收敛速度慢等。本文针对这些缺陷提出了2点改进方法:首先,利用减法聚... 在聚类分析中,模糊C均值(FCM)聚类算法有着广泛的应用。在实际应用中,该算法存在着很多缺陷,如最优聚类数目的确定完全依赖于数据的数目,算法易收敛到局部极值点以及收敛速度慢等。本文针对这些缺陷提出了2点改进方法:首先,利用减法聚类确定聚类数目的范围,提出一个新的聚类有效性指标函数,实现最优聚类数目的自适应确定。在此基础上,提出了基于粒子群(PSO)的模糊C均值混合聚类算法,以解决已有原始FCM聚类算法容易陷入局部极小点和收敛速度慢的问题。仿真测试结果表明:改进后的FCM聚类算法能够有效减少迭代次数,并以较快的收敛速度获得更加准确的聚类结果。最后,将改进的FCM聚类算法应用到冲绳海槽热液硫化物矿物组分分析中,准确地反映出了其矿物化学组分中主要金属元素的分布特征及矿石分类状况。 展开更多
关键词 有效性 粒子群算法 模糊c均值聚类算法 海底热液硫化物 组分
下载PDF
加权模糊C均值聚类算法实现BDS三频组合观测值优选 被引量:7
19
作者 孟凡军 李树军 +2 位作者 潘宗鹏 孙亦成 李忠盼 《国防科技大学学报》 EI CAS CSCD 北大核心 2019年第3期92-98,共7页
在对BDS三频载波相位组合观测值进行误差分析的基础上,确定了优选载波相位线性组合系数的筛选标准。针对传统聚类算法在高维多频混合数据集分类中存在的不足,采用一种基于加权的模糊C均值聚类算法,通过对同一维度在不同簇上赋予不同的... 在对BDS三频载波相位组合观测值进行误差分析的基础上,确定了优选载波相位线性组合系数的筛选标准。针对传统聚类算法在高维多频混合数据集分类中存在的不足,采用一种基于加权的模糊C均值聚类算法,通过对同一维度在不同簇上赋予不同的权重值,对传统遍历搜索法所获得的部分BDS三频载波相位组合观测值进行了优化分类选取,有效解决了传统全球导航卫星系统载波相位观测值选取方法效率低的问题,同时为多系统多频数据组合观测值系数的优化选取提供了一种新的思路。对分类结果进行分析,确定了各类组合观测量的适用范围,并结合实测数据,利用无几何层叠模糊度解算方法对优选组合进行了整周模糊度的解算,结果验证了该方法的可行性。 展开更多
关键词 三频载波相位 混合数据 组合观测值优化 加权模糊c均值聚类算法 无几何cIR算法 整周模糊
下载PDF
基于模糊C均值聚类算法的金刚石砂轮磨粒边缘检测 被引量:2
20
作者 高琦 崔长彩 +2 位作者 胡捷 叶瑞芳 黄辉 《计量学报》 CSCD 北大核心 2014年第4期315-322,共8页
基于模糊 C 均值(FCM)聚类算法将金刚石砂轮表面检测数据划分成金刚石和结合剂两个类别,以数据的质心初始化聚类中心,用迭代的方法分别求出相应的最优聚类中心和隶属度矩阵,通过选取合适的隶属度阈值以及两个聚类中心的欧氏距离阈... 基于模糊 C 均值(FCM)聚类算法将金刚石砂轮表面检测数据划分成金刚石和结合剂两个类别,以数据的质心初始化聚类中心,用迭代的方法分别求出相应的最优聚类中心和隶属度矩阵,通过选取合适的隶属度阈值以及两个聚类中心的欧氏距离阈值来区分金刚石和结合剂,确定磨粒边缘。为验证方法的可行性,对多组数据进行检测,并用模拟的砂轮表面形貌对此方法进行了评定,评定结果与设定值误差不超过2.0%。 展开更多
关键词 计量学 边缘检测 模糊c均值聚类算法 金刚石砂轮 磨粒
下载PDF
上一页 1 2 11 下一页 到第
使用帮助 返回顶部