With the development of the offshore deep water oil industry many researchers are focusing on the vortex-induced vibrations (VIV) of deep risers. In the present work, Reynolds-averaged Navier-Stokes (RANS) equatio...With the development of the offshore deep water oil industry many researchers are focusing on the vortex-induced vibrations (VIV) of deep risers. In the present work, Reynolds-averaged Navier-Stokes (RANS) equations were combined with the SST κ-ω turbulent model to simulate the stream-wise and transverse motion of an elastically mounted cylinder with a low mass-ratio, a natural frequency ratio of fx/fy = 1 and an Re number between 5 300 and 32 000, The four-order Runge-Kutta method was applied to solve the oscillating equation of the cylinder. The relationship between reduced velocity and parameters of the cylinder, including the lift coefficient, the drag coefficient, displacement and the vortex structure were then compared with recent experimental results and discussed in detail. The present numerical simulation reproduced effects have been observed in experiments, such as the lock-in phenomenon, the hysteretic phenomenon and beating behavior.展开更多
According to the formation of shock wave resulting from coal and gas outburst, the gas flow of coal and gas outburst was transformed from an unsteady flow to a steady one based on selected appropriate reference coordi...According to the formation of shock wave resulting from coal and gas outburst, the gas flow of coal and gas outburst was transformed from an unsteady flow to a steady one based on selected appropriate reference coordinates, and the mathematical expressions were then established by applying mass conservation, momentum conservation equation, and energy conservation equation. On this basis, analyzed gas flow mitigation of variable cross-section area and the outburst intensity, and the relations between cross-section area, velocity, and density; the relations between overpressures and outburst intensity were deduced. Furthermore, shock waves resulting from coal and gas outburst and outburst intensity were measured by experimental setup, the overpressure and outburst intensity of different gas pressures were obtained, and the similar conditions of the experiment were numerically simulated. The averaged overpressure and gas flow velocity of variable cross-section under different gas pressures were numerically derived. The results show that the averaged overpressure and outburst intensity obtained from simulation are in good agreement with the experimental results. Moreover, the gas flow velocity of variable cross-sections approximates to the theoretical analysis.展开更多
The modal characteristics of the transverse vibration of an axially moving roller chain coupled with lumped mass were analyzed.The chain system was modeled by using the multi-body dynamics theory and the governing equ...The modal characteristics of the transverse vibration of an axially moving roller chain coupled with lumped mass were analyzed.The chain system was modeled by using the multi-body dynamics theory and the governing equations were derived by means of Lagrange's equations.The effects of the parameters,such as the axially moving velocity of the chain,the tension force,the weight of lumped mass and its time-variable assign position in chain span,on the modal characteristics of transverse vibration for roller chain were investigated.The numerical examples were given.It is found that the natural frequencies and the corresponding mode shapes of the transverse vibration for roller chain coupled with lumped mass change significantly when the variations of above parameters are considered.With the movement of the chain strand,the natural frequencies present a fluctuating phenomenon,which is different from the uniform chain.The higher the order of mode is,the greater the fluctuating magnitude and frequency are.展开更多
Accurate modelling of the potential failure modes in the rock mass is an essential task towards a robust design of roof support systems in coal mines.The use of generalised rock mass properties based on averaged prope...Accurate modelling of the potential failure modes in the rock mass is an essential task towards a robust design of roof support systems in coal mines.The use of generalised rock mass properties based on averaged properties(e.g.Hoek-Brown model) has been found to limit the capability to reproduce the actual rock mass behaviour which may include a wide range of interacting and complex failure mechanisms such as shear and tension fracturing of the intact rock and shear and separation of pre-existing discontinuities,including re-activation.Recent studies have also shown that traditional models,such as the Mohr-Coulomb,may not accurately describe the behaviour of the intact rock,particularly for stress induced failures where spalling and slabbing are observed.This is mainly due to the cohesion and friction components of the shear strength of the intact rock not being mobilised at the same rate with strain-softening of the former component playing an essential role in the post peak behaviour.In addition,coal measure rocks are often transversely isotropic,both by way of the preferred orientation of clay particles within the finer grained lithology and by bedding textures and bedding partings,and this is often ignored in computer simulations.A newly developed transversely isotropic brittle rock mass model is applied in the simulation of a hypothetical and simple roadway development.A Cohesion Weakening-Friction Strengthening(CWFS) approach is adopted to describe the intact rock where the mobilisation and strain-softening of the two shear strength components are linked to plastic deformation.The impacts of anisotropy and brittle rock on the development of the excavation disturbed zone or height of softening,as often referred to,are investigated and their implication in the roof support design discussed.展开更多
CERN/SPS上的NA49实验组最近发表了158 A GeV p-p,Pb-PB碰撞奇异介子φ产生的产额、横质量分布和快度分布的实验数据.建立在强子和弦模型基础上的级联模型LUCIAE系统地研究了这些数据.通过调整弦碎裂中产生qq对的Gauss分布宽度使p-p碰...CERN/SPS上的NA49实验组最近发表了158 A GeV p-p,Pb-PB碰撞奇异介子φ产生的产额、横质量分布和快度分布的实验数据.建立在强子和弦模型基础上的级联模型LUCIAE系统地研究了这些数据.通过调整弦碎裂中产生qq对的Gauss分布宽度使p-p碰撞的φ介子横质量分布的LUCIAE结果与实验更好符合,得到的p-p碰撞φ介子快度分布,Pb-Pb碰撞中φ介子横质量分布与快度分布以及Pb-Pb相对于p-p的φ介子的增强因子的LUCIAE结果都与相应实验数据更好符合.这表明:158 A GeV的Pb-Pb碰撞中φ介子产额相对于同能量p-p碰撞的增强现象可以在LU-CIAE模型中,用弦发射胶子的集体效应和奇异夸克压低的约化机制来解释.展开更多
The bleed hole diameter,depth,and boundary layer thickness are key design parameters of a supersonic bleed system.The evolution trend of single-hole bleed flow coefficient with the ratio of boundary layer thickness to...The bleed hole diameter,depth,and boundary layer thickness are key design parameters of a supersonic bleed system.The evolution trend of single-hole bleed flow coefficient with the ratio of boundary layer thickness to bleed hole diameter and the ratio of bleed hole depth to diameter is investigated by numerical simulations under choking and non-choking conditions.The results show that the subsonic leading edge of the circular hole and the subsonic part of the boundary layer are the main factors causing lateral flow of the bleed hole.The effect of diameter on bleed mass flow rate is due to the viscous effect which reduces the effective diameter.The larger the ratio of displacement thickness to bleed hole diameter,the more obvious the viscous effect is.The depth affects bleed flow rate by changing the opening and closing states of the separation zone.When a certain depth is reached,the development of the boundary layer reduces the effective captured stream tube and thus reduces the bleed mass flow rate.The main objective of the study is to obtain the physical mechanism of the bleed hole size parameters affecting the bleed mass flow rate,and to provide theoretical guidance for the selection of the size of bleed holes in the design of a porous arrays bleed system in hypersonic inlets.展开更多
文摘With the development of the offshore deep water oil industry many researchers are focusing on the vortex-induced vibrations (VIV) of deep risers. In the present work, Reynolds-averaged Navier-Stokes (RANS) equations were combined with the SST κ-ω turbulent model to simulate the stream-wise and transverse motion of an elastically mounted cylinder with a low mass-ratio, a natural frequency ratio of fx/fy = 1 and an Re number between 5 300 and 32 000, The four-order Runge-Kutta method was applied to solve the oscillating equation of the cylinder. The relationship between reduced velocity and parameters of the cylinder, including the lift coefficient, the drag coefficient, displacement and the vortex structure were then compared with recent experimental results and discussed in detail. The present numerical simulation reproduced effects have been observed in experiments, such as the lock-in phenomenon, the hysteretic phenomenon and beating behavior.
基金Supported by the National Natural Science Foundation of China (50874111) the National High Technology Research and Development Program (2009AA063201)+2 种基金 the Program for New Century Excellent Talents in University of China (NCET-10-0724) the Fundamental Research Funds for Central Universities(2010QZ05) SRF for ROCS, SEM
文摘According to the formation of shock wave resulting from coal and gas outburst, the gas flow of coal and gas outburst was transformed from an unsteady flow to a steady one based on selected appropriate reference coordinates, and the mathematical expressions were then established by applying mass conservation, momentum conservation equation, and energy conservation equation. On this basis, analyzed gas flow mitigation of variable cross-section area and the outburst intensity, and the relations between cross-section area, velocity, and density; the relations between overpressures and outburst intensity were deduced. Furthermore, shock waves resulting from coal and gas outburst and outburst intensity were measured by experimental setup, the overpressure and outburst intensity of different gas pressures were obtained, and the similar conditions of the experiment were numerically simulated. The averaged overpressure and gas flow velocity of variable cross-section under different gas pressures were numerically derived. The results show that the averaged overpressure and outburst intensity obtained from simulation are in good agreement with the experimental results. Moreover, the gas flow velocity of variable cross-sections approximates to the theoretical analysis.
基金Project(50605060) supported by the National Natural Science Foundation of ChinaProject(20050056058) supported by the Research Fund for the Doctoral Program of Higher Education of ChinaProject(06YFJMJC03300) supported by the National Science Foundation of Tianjin,China
文摘The modal characteristics of the transverse vibration of an axially moving roller chain coupled with lumped mass were analyzed.The chain system was modeled by using the multi-body dynamics theory and the governing equations were derived by means of Lagrange's equations.The effects of the parameters,such as the axially moving velocity of the chain,the tension force,the weight of lumped mass and its time-variable assign position in chain span,on the modal characteristics of transverse vibration for roller chain were investigated.The numerical examples were given.It is found that the natural frequencies and the corresponding mode shapes of the transverse vibration for roller chain coupled with lumped mass change significantly when the variations of above parameters are considered.With the movement of the chain strand,the natural frequencies present a fluctuating phenomenon,which is different from the uniform chain.The higher the order of mode is,the greater the fluctuating magnitude and frequency are.
基金Project support from the Specialist Technical Apprentice Scheme from Coffey Geotechnics Ltd. Pty
文摘Accurate modelling of the potential failure modes in the rock mass is an essential task towards a robust design of roof support systems in coal mines.The use of generalised rock mass properties based on averaged properties(e.g.Hoek-Brown model) has been found to limit the capability to reproduce the actual rock mass behaviour which may include a wide range of interacting and complex failure mechanisms such as shear and tension fracturing of the intact rock and shear and separation of pre-existing discontinuities,including re-activation.Recent studies have also shown that traditional models,such as the Mohr-Coulomb,may not accurately describe the behaviour of the intact rock,particularly for stress induced failures where spalling and slabbing are observed.This is mainly due to the cohesion and friction components of the shear strength of the intact rock not being mobilised at the same rate with strain-softening of the former component playing an essential role in the post peak behaviour.In addition,coal measure rocks are often transversely isotropic,both by way of the preferred orientation of clay particles within the finer grained lithology and by bedding textures and bedding partings,and this is often ignored in computer simulations.A newly developed transversely isotropic brittle rock mass model is applied in the simulation of a hypothetical and simple roadway development.A Cohesion Weakening-Friction Strengthening(CWFS) approach is adopted to describe the intact rock where the mobilisation and strain-softening of the two shear strength components are linked to plastic deformation.The impacts of anisotropy and brittle rock on the development of the excavation disturbed zone or height of softening,as often referred to,are investigated and their implication in the roof support design discussed.
文摘CERN/SPS上的NA49实验组最近发表了158 A GeV p-p,Pb-PB碰撞奇异介子φ产生的产额、横质量分布和快度分布的实验数据.建立在强子和弦模型基础上的级联模型LUCIAE系统地研究了这些数据.通过调整弦碎裂中产生qq对的Gauss分布宽度使p-p碰撞的φ介子横质量分布的LUCIAE结果与实验更好符合,得到的p-p碰撞φ介子快度分布,Pb-Pb碰撞中φ介子横质量分布与快度分布以及Pb-Pb相对于p-p的φ介子的增强因子的LUCIAE结果都与相应实验数据更好符合.这表明:158 A GeV的Pb-Pb碰撞中φ介子产额相对于同能量p-p碰撞的增强现象可以在LU-CIAE模型中,用弦发射胶子的集体效应和奇异夸克压低的约化机制来解释.
基金supported by the National Natural Science Foundation of China(No.11472304)the Graduate Innovation Grant of Hunan Province(No.CX2017B006),China。
文摘The bleed hole diameter,depth,and boundary layer thickness are key design parameters of a supersonic bleed system.The evolution trend of single-hole bleed flow coefficient with the ratio of boundary layer thickness to bleed hole diameter and the ratio of bleed hole depth to diameter is investigated by numerical simulations under choking and non-choking conditions.The results show that the subsonic leading edge of the circular hole and the subsonic part of the boundary layer are the main factors causing lateral flow of the bleed hole.The effect of diameter on bleed mass flow rate is due to the viscous effect which reduces the effective diameter.The larger the ratio of displacement thickness to bleed hole diameter,the more obvious the viscous effect is.The depth affects bleed flow rate by changing the opening and closing states of the separation zone.When a certain depth is reached,the development of the boundary layer reduces the effective captured stream tube and thus reduces the bleed mass flow rate.The main objective of the study is to obtain the physical mechanism of the bleed hole size parameters affecting the bleed mass flow rate,and to provide theoretical guidance for the selection of the size of bleed holes in the design of a porous arrays bleed system in hypersonic inlets.