为提升合同中数据项识别和提取的准确率,提出一种基于卷积神经网络(Convolutional Neural Network,CNN)和残差结构单元(Residual Building Unit,RBU)结合优化的CNN-RECR(Real Estate Transaction Contract Information Detection and Re...为提升合同中数据项识别和提取的准确率,提出一种基于卷积神经网络(Convolutional Neural Network,CNN)和残差结构单元(Residual Building Unit,RBU)结合优化的CNN-RECR(Real Estate Transaction Contract Information Detection and Recognition Method Based on Improved Convolutional Neural Network)模型,并将其应用到不动产交易平台中合同数据项的识别提取场景。首先,针对提取特征表示能力弱等问题,设计了合同数据文本检测网络(Contract Data Text Detection Network,CDTD-Net)对合同手写文字的不同尺度特征进行提取;其次,与残差结构单元相结合,设计识别文字与识别数字模型;最后,对实例进行实验,实验结果显示CNN-RECR模型的识别准确率达到97.62%,证明本方法能有效提高模型的识别性能,为实现低成本运行奠定了基础。展开更多
目的点云是一种重要的三维数据表示形式,已在无人驾驶、虚拟现实、三维测量等领域得到了应用。由于点云具有分辨率高的特性,数据传输需要消耗大量的网络带宽和存储资源,严重阻碍了进一步推广。为此,在深度学习的点云自编码器压缩框架基...目的点云是一种重要的三维数据表示形式,已在无人驾驶、虚拟现实、三维测量等领域得到了应用。由于点云具有分辨率高的特性,数据传输需要消耗大量的网络带宽和存储资源,严重阻碍了进一步推广。为此,在深度学习的点云自编码器压缩框架基础上,提出一种结合密集残差结构和多尺度剪枝的点云压缩网络,实现了对点云几何信息和颜色信息的高效压缩。方法针对点云的稀疏化特点以及传统体素网格表示点云时分辨率不足的问题,采用稀疏张量作为点云的表示方法,并使用稀疏卷积和子流形卷积取代常规卷积提取点云特征;为了捕获压缩过程中高维信息的依赖性,将密集残差结构和通道注意力机制引入到点云特征提取模块;为了补偿采样过程的特征损失以及减少模型训练的动态内存占用,自编码器采用多尺度渐进式结构,并在其解码器不同尺度的上采样层之后加入剪枝层。为了扩展本文网络的适用范围,设计了基于几何信息的点云颜色压缩方法,以保留点云全局颜色特征。结果针对几何信息压缩,本文网络在MVUB(Microsoft voxelized upper bodies)、8iVFB(8i voxelized full bodies)和Owlii(Owlii dynamic human mesh sequence dataset)3个数据集上与其他5种方法进行比较。相对MPEG(moving picture experts group)提出的点云压缩标准V-PCC(video-based point cloud compression),BD-Rate(bjontegaard delta rate)分别增加了41%、54%和33%。本文网络的编码运行时间与G-PCC(geometry-based point cloud compression)相当,仅为V-PCC的2.8%。针对颜色信息压缩,本文网络在低比特率下的YUV-PSNR(YUV peak signal to noise ratio)性能优于G-PCC中基于八叉树的颜色压缩方法。结论本文网络在几何压缩和颜色压缩上优于主流的点云压缩方法,能在速率较小的情况下保留更多原始点云信息。展开更多
文摘为提升合同中数据项识别和提取的准确率,提出一种基于卷积神经网络(Convolutional Neural Network,CNN)和残差结构单元(Residual Building Unit,RBU)结合优化的CNN-RECR(Real Estate Transaction Contract Information Detection and Recognition Method Based on Improved Convolutional Neural Network)模型,并将其应用到不动产交易平台中合同数据项的识别提取场景。首先,针对提取特征表示能力弱等问题,设计了合同数据文本检测网络(Contract Data Text Detection Network,CDTD-Net)对合同手写文字的不同尺度特征进行提取;其次,与残差结构单元相结合,设计识别文字与识别数字模型;最后,对实例进行实验,实验结果显示CNN-RECR模型的识别准确率达到97.62%,证明本方法能有效提高模型的识别性能,为实现低成本运行奠定了基础。
文摘SSD(Single Shot Multibox Detector)是一种基于卷积神经网络的单阶检测算法,相比双阶检测算法,它在保证一定精度的同时显著提高了检测速度,但仍难以满足很多实际应用,尤其是在小目标检测任务中,检测精度更是难以满足需求。针对该不足,文中提出了一种基于改进残差结构与卷积注意力模块的特征提取网络Res-Am CNN(Residual with Attention Module Convolutional Neural Networks),大幅提高了网络的特征提取能力,并在原始SSD金字塔结构中引入上采样加法融合(Additive Fusion with Upsample,AFU)来进行特征融合,增强了浅层特征的表征能力。在PASCAL VOC数据集上的实验结果表明,相比原始SSD网络和主流的检测网络,Res-Am&AFU SSD(SSD with Res-Am CNN and AFU)网络在VOC测试集上的平均精度均值(mean Average Precision,mAP)达到69.1%,在精度上领先单阶网络,接近双阶网络,在检测速度上远快于双阶网络。在小目标测试集上的实验结果表明,Res-Am&AFU SSD网络的mAP为67.2%,比原始SSD提高了9.4%,且该方法具有更加灵活、无需预训练等优点。
文摘目的点云是一种重要的三维数据表示形式,已在无人驾驶、虚拟现实、三维测量等领域得到了应用。由于点云具有分辨率高的特性,数据传输需要消耗大量的网络带宽和存储资源,严重阻碍了进一步推广。为此,在深度学习的点云自编码器压缩框架基础上,提出一种结合密集残差结构和多尺度剪枝的点云压缩网络,实现了对点云几何信息和颜色信息的高效压缩。方法针对点云的稀疏化特点以及传统体素网格表示点云时分辨率不足的问题,采用稀疏张量作为点云的表示方法,并使用稀疏卷积和子流形卷积取代常规卷积提取点云特征;为了捕获压缩过程中高维信息的依赖性,将密集残差结构和通道注意力机制引入到点云特征提取模块;为了补偿采样过程的特征损失以及减少模型训练的动态内存占用,自编码器采用多尺度渐进式结构,并在其解码器不同尺度的上采样层之后加入剪枝层。为了扩展本文网络的适用范围,设计了基于几何信息的点云颜色压缩方法,以保留点云全局颜色特征。结果针对几何信息压缩,本文网络在MVUB(Microsoft voxelized upper bodies)、8iVFB(8i voxelized full bodies)和Owlii(Owlii dynamic human mesh sequence dataset)3个数据集上与其他5种方法进行比较。相对MPEG(moving picture experts group)提出的点云压缩标准V-PCC(video-based point cloud compression),BD-Rate(bjontegaard delta rate)分别增加了41%、54%和33%。本文网络的编码运行时间与G-PCC(geometry-based point cloud compression)相当,仅为V-PCC的2.8%。针对颜色信息压缩,本文网络在低比特率下的YUV-PSNR(YUV peak signal to noise ratio)性能优于G-PCC中基于八叉树的颜色压缩方法。结论本文网络在几何压缩和颜色压缩上优于主流的点云压缩方法,能在速率较小的情况下保留更多原始点云信息。