期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
毫秒延时爆破等效单响药量计算及振速预测 被引量:7
1
作者 何理 杨仁树 +3 位作者 钟东望 李鹏 吴春平 陈江伟 《爆炸与冲击》 EI CAS CSCD 北大核心 2021年第9期129-141,共13页
毫秒延时爆破存在同段雷管离散及分段振波叠加效应,对单响药量取值及质点峰值振速的预报带来极大困扰。设计开展毫秒延时爆破试验,建立群孔齐发爆破振速的计算模型,研究并构建炮孔数目对齐发爆破等效药量影响及其取值方法;并基于单孔爆... 毫秒延时爆破存在同段雷管离散及分段振波叠加效应,对单响药量取值及质点峰值振速的预报带来极大困扰。设计开展毫秒延时爆破试验,建立群孔齐发爆破振速的计算模型,研究并构建炮孔数目对齐发爆破等效药量影响及其取值方法;并基于单孔爆破回归分析结果,提出修正的质点峰值振速与比例距离关系公式。结果表明,群孔齐发爆破等效药量比名义单响药量小,可利用缩比系数和折算炮孔数目进行计算,缩比系数随炮孔数目增加呈指数形式衰减;修正的质点峰值振速与比例距离公式引入的振波叠加因子可反映振波叠加对速度的影响,依据该公式计算得到的质点峰值振速预测值与实测值间平均绝对误差、平均相对误差及均方根误差分别为0.05 cm/s、9.52%、0.059 cm/s,用于现场爆破振动预测切实可行。 展开更多
关键词 毫秒延时爆破 振波叠加 质点峰值振动速度 等效药量 回归分析 比例距离公式
下载PDF
Scaling Argument of Anisotropic Random Walk
2
作者 XUBing-Zhen JINGuo-Jun WANGFei-Feng 《Communications in Theoretical Physics》 SCIE CAS CSCD 2005年第3期449-454,共6页
In this paper, we analytically discuss the scaling properties of the average square end-to-end distance < R-2 > for anisotropic random walk in D-dimensional space (D >= 2), and the returning probability P-n(r... In this paper, we analytically discuss the scaling properties of the average square end-to-end distance < R-2 > for anisotropic random walk in D-dimensional space (D >= 2), and the returning probability P-n(r(0)) for the walker into a certain neighborhood of the origin. We will not only give the calculating formula for < R-2 > and P-n(r(0)), but also point out that if there is a symmetric axis for the distribution of the probability density of a single step displacement, we always obtain < R-perpendicular to n(2) > similar to n, where perpendicular to refers to the projections of the displacement perpendicular to each symmetric axes of the walk; in D-dimensional space with D symmetric axes perpendicular to each other, we always have < R-n(2)> similar to n and the random walk will be like a purely random motion; if the number of inter-perpendicular symmetric axis is smaller than < R-n(2)> similar to n(2) the dimensions of the space, we must have n for very large n and the walk will be like a ballistic motion. It is worth while to point out that unlike the isotropic random walk in one and two dimensions, which is certain to return into the neighborhood of the origin, generally there is only a nonzero probability for the anisotropic random walker in two dimensions to return to the neighborhood. 展开更多
关键词 SCALING anisotropic random walk average square end-to-end distance returning probability
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部