Based on coupled-mode theo ry , the eigenvalue equation of five-layered long-period fiber grating(LPFG) sens or with Ag film and gas-sensitive film overlays are firstly studied. The probl em of resolving complex eigen...Based on coupled-mode theo ry , the eigenvalue equation of five-layered long-period fiber grating(LPFG) sens or with Ag film and gas-sensitive film overlays are firstly studied. The probl em of resolving complex eigenvalue equation on five-layered LPFG is analyzed, a nd the method of resolution is also given. Then the eigenvalue equation of three -layered metal cladding LPFG is analyzed, and the complex transcendental equati on is also discussed. The computing result shows that the coupling between the l ow-order EH modes and the core mode is much stronger than that between the low -order HE modes and the core mode.展开更多
The electrical potential inside a cylinder with a space charge layer is used to express the neck potential barrier of nano-SnO2 gas elements, and the neck-controlled sensitivity and the grain size effect are studied. ...The electrical potential inside a cylinder with a space charge layer is used to express the neck potential barrier of nano-SnO2 gas elements, and the neck-controlled sensitivity and the grain size effect are studied. It is shown that the sensing properties are influenced by the microstructural features, such as the grain size, the geometry and connectivity between grains, and that the neck controlled sensitivity alone is higher than the neck-grain controlled sensitivity and the difference between the neck controlled sensitivity and the neck-grain controlled sensitivity is large in the high sensitivity range for nano-SnO2 gas elements, which suggests a possible approach to the improvement of the sensitivity of a sensor by decreasing the number of necks of a nano-grain SnO2 gas element.展开更多
基金"Shu Guang"Plan of Education Committee of Shanghai (02SG32) Natural Science Foundation of ScienceCommittee of Shanghai(03ZR14071)
文摘Based on coupled-mode theo ry , the eigenvalue equation of five-layered long-period fiber grating(LPFG) sens or with Ag film and gas-sensitive film overlays are firstly studied. The probl em of resolving complex eigenvalue equation on five-layered LPFG is analyzed, a nd the method of resolution is also given. Then the eigenvalue equation of three -layered metal cladding LPFG is analyzed, and the complex transcendental equati on is also discussed. The computing result shows that the coupling between the l ow-order EH modes and the core mode is much stronger than that between the low -order HE modes and the core mode.
基金Chongqing Education Committee Foundation (No.020804)
文摘The electrical potential inside a cylinder with a space charge layer is used to express the neck potential barrier of nano-SnO2 gas elements, and the neck-controlled sensitivity and the grain size effect are studied. It is shown that the sensing properties are influenced by the microstructural features, such as the grain size, the geometry and connectivity between grains, and that the neck controlled sensitivity alone is higher than the neck-grain controlled sensitivity and the difference between the neck controlled sensitivity and the neck-grain controlled sensitivity is large in the high sensitivity range for nano-SnO2 gas elements, which suggests a possible approach to the improvement of the sensitivity of a sensor by decreasing the number of necks of a nano-grain SnO2 gas element.