Colored layered double hydroxides (LDHs) can be synthesized by introducing colored cations such as Fe^3+ and Cr^3 +, which call be used as thermal stabilizers for polyvinyl chloride (PVC). The yellowish Mg/Fe an...Colored layered double hydroxides (LDHs) can be synthesized by introducing colored cations such as Fe^3+ and Cr^3 +, which call be used as thermal stabilizers for polyvinyl chloride (PVC). The yellowish Mg/Fe and bluish Mg/Cr LDHs are prepared by the co-precipitation method. The results show that the MgsCr_ CO3 and Mg3Fe_ CO3 colored layered double hydroxides can stabilize PVC for more than 30 min under the thermal aging temperature of 180 ℃. The preparation can use cheap Mg(OH) 2 instead of MgCl2, which produces a much smaller amount of the by-product NH4Cl. It is known that NH4Cl is a cheap fertilizer that is difficult to sell; therefore, the preparation is much greener and more economic than the one using magnesium salt.展开更多
Two-dimensional layered double hydroxides(LDHs)have been identified as promising electrocatalysts for the oxygen evolution reaction(OER);however,the simple and effective synthesis of high-quality LDHs remains extremel...Two-dimensional layered double hydroxides(LDHs)have been identified as promising electrocatalysts for the oxygen evolution reaction(OER);however,the simple and effective synthesis of high-quality LDHs remains extremely challenging and the active sites have not been clarified.Herein,we report a facile solution-reaction method for preparing an ultrathin(thickness<2 nm)nonprecious CoFe-based LDH.Co_(1)Fe_(0.2) LDH delivers a current density of 10 mA cm^(-2) and a high turnover frequency of 0.082 s^(-1) per total 3d metal atoms at a low overpotential of 256 mV.Its mass activity is 277.9 A g^(-1) at an overpotential of 300 mV for the OER.Kinetic studies reveal the Co site as the main active center for the OER.The doped Fe lowers the reaction barrier by accelerating the charge-transfer process.Theoretical calculations reveal that the surface Co sites adjacent to Fe atoms are the active centers for the OER and the subsurface Fe dopants excessively weaken the OH^(*)adsorption,thus increasing the energy barrier of the rate-determining step.This study can guide the rational design of high-performance CoFe-based LDHs for water splitting.展开更多
Kinetics parameters of iron oxide reduction by hydrogen were evaluated by the isothermal method in a differential micro-packed bed. Influence of external diffusion, internal diffusion and heat transfer on the intrinsi...Kinetics parameters of iron oxide reduction by hydrogen were evaluated by the isothermal method in a differential micro-packed bed. Influence of external diffusion, internal diffusion and heat transfer on the intrinsic reaction rate was investigated and the conditions free of internal and external diffusion resistance have been determined. In the experiments, in order to correctly evaluate the intrinsic kinetics parameters for reducing Fe203 to Fe3O4, the reaction temperatures were set between 440 ℃ and 490 ℃. However, in order to distinguish the reduction of Fe304 to FeO from that of FeO to Fe, the reaction temperature in the experiment was set to be greater than 570 ℃. Intrinsic kinetics of iron oxide reduction by hydrogen was established and the newly established kinetic models were validated by the experimental data.展开更多
Depositing a cocatalyst has proven to be an important strategy for improving the photoelectrochemical(PEC)water-splitting efficiency of photoanodes.In this study,Ni(OH)2 quantum dots(Ni(OH)2 QDs)were deposited in situ...Depositing a cocatalyst has proven to be an important strategy for improving the photoelectrochemical(PEC)water-splitting efficiency of photoanodes.In this study,Ni(OH)2 quantum dots(Ni(OH)2 QDs)were deposited in situ onto anα-Fe_(2)O_(3)photoanode via a chelation-mediated hydrolysis method.The photocurrent density of the Ni(OH)2 QDs/α-Fe_(2)O_(3)photoanode reached 1.93 mA·cm^(−2)at 1.23 V vs.RHE,which is 3.5 times that ofα-Fe_(2)O_(3),and an onset potential with a negative shift of ca.100 mV was achieved.More importantly,the Ni(OH)2 QDs exhibited excellent stability in maintaining PEC water oxidation at a high current density,which is attributed to the ultra-small crystalline size,allowing for the rapid acceptance of holes fromα-Fe_(2)O_(3)to Ni(OH)_(2)QDs,formation of active sites for water oxidation,and hole transfer from the active sites to water molecules.Further(photo)electrochemical analysis suggests that Ni(OH)_(2)QDs not only provide maximal active sites for water oxidation but also suppress charge recombination by passivating the surface states ofα-Fe_(2)O_(3),thereby significantly enhancing the water oxidation kinetics over theα-Fe_(2)O_(3)surface.展开更多
An efficient and economical oxygen evolution reaction(OER)catalyst is critical to the widespread application of solar energy to fuel conversion.Among many potential OER catalysts,the metal oxyhydroxides,especially FeO...An efficient and economical oxygen evolution reaction(OER)catalyst is critical to the widespread application of solar energy to fuel conversion.Among many potential OER catalysts,the metal oxyhydroxides,especially FeOOH,show promising OER reactivity.In the present work,we performed a DFT+U study of the OER mechanism on theγ‐FeOOH(010)surface.In particular,we established the chemical potential of the OH?and hole pair and included the OH?anion in the reaction pathway,accounting to the alkaline conditions of anodic OER process.We then analyzed the OER pathways on the surface with OH‐,O‐and Fe‐terminations.On the surface with OH‐and O‐terminations,the O2molecule could form from either OH reacting with the surface oxygen species(-OH*and-O*)or the combination of two surface oxygen species.On the Fe‐terminated surface,O2can only form by adsorbing OH on the Fe sites first.The potential‐limiting step of the oxygen evolution with different surface terminations was determined by following the free‐energy change of the elementary steps along each pathway.Our results show that oxygen formation requires recreating the surface Fe sites,and consequently,the condition that favors the partially exposed Fe sites will promote oxygen formation.展开更多
基金The Fundamental Research Funds for the Central Universities,the Scientific Innovation Research of College Graduates in Jiangsu Province(No.CXLX12-0105)the Analysis and Test Fund of Southeast University(No.201226)
文摘Colored layered double hydroxides (LDHs) can be synthesized by introducing colored cations such as Fe^3+ and Cr^3 +, which call be used as thermal stabilizers for polyvinyl chloride (PVC). The yellowish Mg/Fe and bluish Mg/Cr LDHs are prepared by the co-precipitation method. The results show that the MgsCr_ CO3 and Mg3Fe_ CO3 colored layered double hydroxides can stabilize PVC for more than 30 min under the thermal aging temperature of 180 ℃. The preparation can use cheap Mg(OH) 2 instead of MgCl2, which produces a much smaller amount of the by-product NH4Cl. It is known that NH4Cl is a cheap fertilizer that is difficult to sell; therefore, the preparation is much greener and more economic than the one using magnesium salt.
文摘Two-dimensional layered double hydroxides(LDHs)have been identified as promising electrocatalysts for the oxygen evolution reaction(OER);however,the simple and effective synthesis of high-quality LDHs remains extremely challenging and the active sites have not been clarified.Herein,we report a facile solution-reaction method for preparing an ultrathin(thickness<2 nm)nonprecious CoFe-based LDH.Co_(1)Fe_(0.2) LDH delivers a current density of 10 mA cm^(-2) and a high turnover frequency of 0.082 s^(-1) per total 3d metal atoms at a low overpotential of 256 mV.Its mass activity is 277.9 A g^(-1) at an overpotential of 300 mV for the OER.Kinetic studies reveal the Co site as the main active center for the OER.The doped Fe lowers the reaction barrier by accelerating the charge-transfer process.Theoretical calculations reveal that the surface Co sites adjacent to Fe atoms are the active centers for the OER and the subsurface Fe dopants excessively weaken the OH^(*)adsorption,thus increasing the energy barrier of the rate-determining step.This study can guide the rational design of high-performance CoFe-based LDHs for water splitting.
基金Supported by the National Natural Science Foundation of China (20736004)the State Key Development Program for Basic Research of China (2007CB613502)
文摘Kinetics parameters of iron oxide reduction by hydrogen were evaluated by the isothermal method in a differential micro-packed bed. Influence of external diffusion, internal diffusion and heat transfer on the intrinsic reaction rate was investigated and the conditions free of internal and external diffusion resistance have been determined. In the experiments, in order to correctly evaluate the intrinsic kinetics parameters for reducing Fe203 to Fe3O4, the reaction temperatures were set between 440 ℃ and 490 ℃. However, in order to distinguish the reduction of Fe304 to FeO from that of FeO to Fe, the reaction temperature in the experiment was set to be greater than 570 ℃. Intrinsic kinetics of iron oxide reduction by hydrogen was established and the newly established kinetic models were validated by the experimental data.
文摘Depositing a cocatalyst has proven to be an important strategy for improving the photoelectrochemical(PEC)water-splitting efficiency of photoanodes.In this study,Ni(OH)2 quantum dots(Ni(OH)2 QDs)were deposited in situ onto anα-Fe_(2)O_(3)photoanode via a chelation-mediated hydrolysis method.The photocurrent density of the Ni(OH)2 QDs/α-Fe_(2)O_(3)photoanode reached 1.93 mA·cm^(−2)at 1.23 V vs.RHE,which is 3.5 times that ofα-Fe_(2)O_(3),and an onset potential with a negative shift of ca.100 mV was achieved.More importantly,the Ni(OH)2 QDs exhibited excellent stability in maintaining PEC water oxidation at a high current density,which is attributed to the ultra-small crystalline size,allowing for the rapid acceptance of holes fromα-Fe_(2)O_(3)to Ni(OH)_(2)QDs,formation of active sites for water oxidation,and hole transfer from the active sites to water molecules.Further(photo)electrochemical analysis suggests that Ni(OH)_(2)QDs not only provide maximal active sites for water oxidation but also suppress charge recombination by passivating the surface states ofα-Fe_(2)O_(3),thereby significantly enhancing the water oxidation kinetics over theα-Fe_(2)O_(3)surface.
基金supported by the Chemical,Biological,Environmental,and Transport Systems(CBET)program of US National Science Foundation(CBET-1438440)~~
文摘An efficient and economical oxygen evolution reaction(OER)catalyst is critical to the widespread application of solar energy to fuel conversion.Among many potential OER catalysts,the metal oxyhydroxides,especially FeOOH,show promising OER reactivity.In the present work,we performed a DFT+U study of the OER mechanism on theγ‐FeOOH(010)surface.In particular,we established the chemical potential of the OH?and hole pair and included the OH?anion in the reaction pathway,accounting to the alkaline conditions of anodic OER process.We then analyzed the OER pathways on the surface with OH‐,O‐and Fe‐terminations.On the surface with OH‐and O‐terminations,the O2molecule could form from either OH reacting with the surface oxygen species(-OH*and-O*)or the combination of two surface oxygen species.On the Fe‐terminated surface,O2can only form by adsorbing OH on the Fe sites first.The potential‐limiting step of the oxygen evolution with different surface terminations was determined by following the free‐energy change of the elementary steps along each pathway.Our results show that oxygen formation requires recreating the surface Fe sites,and consequently,the condition that favors the partially exposed Fe sites will promote oxygen formation.