Commercially available coal-based activated carbon was treated by nitric acid with different concentrations and the resultant samples were used as catalysts for the direct hydroxylation of benzene to phenol in acetoni...Commercially available coal-based activated carbon was treated by nitric acid with different concentrations and the resultant samples were used as catalysts for the direct hydroxylation of benzene to phenol in acetonitrile. Boehm titration, X-ray photoelectron spectroscopy, scanning electron microscope coupled with an energy dispersive X-ray microanalyzer, and Brunauer-Emmett-Teller method were used to characterize the samples. The number of carboxyl groups on the surface was found to be the main factor affecting the catalytic activity. An optimum catalytic performance with a yield of 15.7% and a selectivity of 87.2% to phenol was obtained.展开更多
Silver nanoparticles prepared by the direct reduction of AgNO3 in aqueous solution were compacted into coins and used as the cathode for the electrocatalytic carboxylation of 1-phenethyl bromide with CO2. The influenc...Silver nanoparticles prepared by the direct reduction of AgNO3 in aqueous solution were compacted into coins and used as the cathode for the electrocatalytic carboxylation of 1-phenethyl bromide with CO2. The influences of the working electrode, charge, current density and temperature were investigated. Under optimized conditions, 98% yield of 2-phenylpropionic acid was obtained. The reaction was performed under very mild conditions and no added catalyst was required in the electrolyte. Yields that varied from moderate to excellent were also achieved with other benzyl bromides. This electrode has good stability and reusability, and the yield and selectivity of 2-phenylpropionic acid could be maintained during reuse for 10 times.展开更多
Palladium-catalyzed carboxylative Suzuki coupling reactions of benzyl chlorides with allyl pinacol-borate were successfully conducted in the absence of any extra ligand to produce β,γ-unsaturated esters in satisfact...Palladium-catalyzed carboxylative Suzuki coupling reactions of benzyl chlorides with allyl pinacol-borate were successfully conducted in the absence of any extra ligand to produce β,γ-unsaturated esters in satisfactory to good yields. The carboxylative Suzuki coupling reaction proceeded smooth-ly under mild conditions in the presence of palladium nanoparticles generated in situ through the formation of a π-benzylpalladium chloride intermediate.展开更多
The visible‐light photoredox‐catalyzed carboxylation of benzyl chlorides and bromides with CO_(2) has been reported.With inexpensive organic dyes as photocatalysts and amines as electron donors,this carboxylation pr...The visible‐light photoredox‐catalyzed carboxylation of benzyl chlorides and bromides with CO_(2) has been reported.With inexpensive organic dyes as photocatalysts and amines as electron donors,this carboxylation proceeds well in the absence of sensitive organometallic reagents,transition metal catalysts,or metallic reductants.A wide range of commercially available and inexpensive benzyl halides undergo such carboxylation to give valuable aryl acetic acids,including several pharmaceutical molecules and drug precursors,in moderate to high yields.Moreover,this reaction features mild reaction conditions(one atmospheric pressure of CO_(2) and room temperature),broad substrate scope,good functional group tolerance,easy scalability,and low catalyst loading,thus providing an efficient approach for the assembly of aryl acetic acids.展开更多
Visible light‐driven carboxylation with CO_(2) have emerged as a sustainable and powerful way to transfer waste to treasure.However,it is still challenging for aryl fluorides due to the low reactivities of both C(sp2...Visible light‐driven carboxylation with CO_(2) have emerged as a sustainable and powerful way to transfer waste to treasure.However,it is still challenging for aryl fluorides due to the low reactivities of both C(sp2)−F bonds and CO_(2).Herein,we report the first photocatalytic carboxylation of aryl C−F bonds with CO_(2).The visible‐light photoredox catalysis enables selective carboxylation of strong C(sp2)−F bonds in diverse polyluoroarenes,such as penta‐,tetra‐,and tri‐fluoroarenes under mild conditions,providing a facile access to a series of important polyfluoroaryl carboxylic acids with good yields.In contrast to previous reports of direct capture of polyfluoroaryl radicals,mechanistic studies suggest that the reduction of fleeting polyfluoroaryl radicals into polyfluoroaryl anions might be involved in this transformation,which may open a new avenue for photocatalytic functionalization of aryl C−F bonds.展开更多
基金This work was supported by the National Natural Science Foundation of China (No.20502017, No.20872102, and No.21021001), the Program for Changjiang Scholars and Innovative Research Team in University (No.IRT0846), and the characterization of the catalyst from Analytic and Testing Center of Sichuan University are greatly appreciated.
文摘Commercially available coal-based activated carbon was treated by nitric acid with different concentrations and the resultant samples were used as catalysts for the direct hydroxylation of benzene to phenol in acetonitrile. Boehm titration, X-ray photoelectron spectroscopy, scanning electron microscope coupled with an energy dispersive X-ray microanalyzer, and Brunauer-Emmett-Teller method were used to characterize the samples. The number of carboxyl groups on the surface was found to be the main factor affecting the catalytic activity. An optimum catalytic performance with a yield of 15.7% and a selectivity of 87.2% to phenol was obtained.
基金supported by the National Natural Science Foundation of China(21203066,21373090,21473060)~~
文摘Silver nanoparticles prepared by the direct reduction of AgNO3 in aqueous solution were compacted into coins and used as the cathode for the electrocatalytic carboxylation of 1-phenethyl bromide with CO2. The influences of the working electrode, charge, current density and temperature were investigated. Under optimized conditions, 98% yield of 2-phenylpropionic acid was obtained. The reaction was performed under very mild conditions and no added catalyst was required in the electrolyte. Yields that varied from moderate to excellent were also achieved with other benzyl bromides. This electrode has good stability and reusability, and the yield and selectivity of 2-phenylpropionic acid could be maintained during reuse for 10 times.
文摘Palladium-catalyzed carboxylative Suzuki coupling reactions of benzyl chlorides with allyl pinacol-borate were successfully conducted in the absence of any extra ligand to produce β,γ-unsaturated esters in satisfactory to good yields. The carboxylative Suzuki coupling reaction proceeded smooth-ly under mild conditions in the presence of palladium nanoparticles generated in situ through the formation of a π-benzylpalladium chloride intermediate.
文摘The visible‐light photoredox‐catalyzed carboxylation of benzyl chlorides and bromides with CO_(2) has been reported.With inexpensive organic dyes as photocatalysts and amines as electron donors,this carboxylation proceeds well in the absence of sensitive organometallic reagents,transition metal catalysts,or metallic reductants.A wide range of commercially available and inexpensive benzyl halides undergo such carboxylation to give valuable aryl acetic acids,including several pharmaceutical molecules and drug precursors,in moderate to high yields.Moreover,this reaction features mild reaction conditions(one atmospheric pressure of CO_(2) and room temperature),broad substrate scope,good functional group tolerance,easy scalability,and low catalyst loading,thus providing an efficient approach for the assembly of aryl acetic acids.
文摘Visible light‐driven carboxylation with CO_(2) have emerged as a sustainable and powerful way to transfer waste to treasure.However,it is still challenging for aryl fluorides due to the low reactivities of both C(sp2)−F bonds and CO_(2).Herein,we report the first photocatalytic carboxylation of aryl C−F bonds with CO_(2).The visible‐light photoredox catalysis enables selective carboxylation of strong C(sp2)−F bonds in diverse polyluoroarenes,such as penta‐,tetra‐,and tri‐fluoroarenes under mild conditions,providing a facile access to a series of important polyfluoroaryl carboxylic acids with good yields.In contrast to previous reports of direct capture of polyfluoroaryl radicals,mechanistic studies suggest that the reduction of fleeting polyfluoroaryl radicals into polyfluoroaryl anions might be involved in this transformation,which may open a new avenue for photocatalytic functionalization of aryl C−F bonds.