Aim To prepare and characterize ferromagnetic fluids for hyperthermia of tumor. Methods Ferromagnetic fluids (FFs) of magnetite (Fe3O4) was prepared in the presence of polyethylene glycol (PEG-6000) by chemical ...Aim To prepare and characterize ferromagnetic fluids for hyperthermia of tumor. Methods Ferromagnetic fluids (FFs) of magnetite (Fe3O4) was prepared in the presence of polyethylene glycol (PEG-6000) by chemical precipitation method. The iron content of the FFs was determined by spectrophotometric method using o-phenanthroline. The FFs/PEG-6000 was characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD), infrared spectrometry (IR), and vibrating sample magnetometer (VSM). Heating effects of the FFs was measured in an alternating magnetic field in vitro. The hyperthermia of FFs in a rabbit was performed. Results The FFs/PEG-6000 was proved to be composed of Fe3O4 by XRD and IR. TEM showed that the ferromagnetic particles appeared to be almost spherical and dispersed well The average particle size was 13.3 ± 3.8 nm by XRD. The saturation magnetization and residual magnetization of the FFs were 23.39 A/m (1.556 emu/g) and 0.56 A/m (0.02604 emu/g), respectively. The coercive force was 12 Oe. The specific absorption rate (SAR) of FFs was 69 ± 10W/g [Fe]. After direct injection of FFs to hepatic VX2 carcinoma of a rabbit, the temperature in the core of the tumor was between 41 - 46 ℃ in an alternating magnetic field. Conclusion FFs/PEG-6000 was expected to be useful in hyperthermia of tumor.展开更多
The title compound [H4As8V14O42(H2O)]6H2O 1 has been synthesized and characterized by elemental analysis, IR, and single-crystal X-ray diffraction analysis. It crystallizes in trigonal, space group R3c with a = b = 36...The title compound [H4As8V14O42(H2O)]6H2O 1 has been synthesized and characterized by elemental analysis, IR, and single-crystal X-ray diffraction analysis. It crystallizes in trigonal, space group R3c with a = b = 36.447(6), c = 21.485(5) ? V = 24717(8) 3, Z = 18, Mr = 2114.66, Dc = 2.557g/cm3, F(000) = 17928, m = 7.149 mm-1, R = 0.0792 and wR = 0.1265. The [H4As8V14O42- (H2O)] cluster consists of fourteen VO5 square pyramids linked by four As2O5 handle-like units.展开更多
In order to improve the toughness of the cured aromatic tetrafunctional epoxy resins, a dlmer rarboxylic acid named dlmer fatty acid (DFA) was used to modify an aromatic tetrafunctional epoxy, N, N, N', N'-tetragl...In order to improve the toughness of the cured aromatic tetrafunctional epoxy resins, a dlmer rarboxylic acid named dlmer fatty acid (DFA) was used to modify an aromatic tetrafunctional epoxy, N, N, N', N'-tetraglycidyl-2,2-bis [ 4-( 4-aminophcuoxy ) phenyl ] propane (TGBAPP). The curing behaviors of DFA- TGBAPP/MNA ( methyl nadic anhydride) systems were studied by differential scanning calorimetry (DSC) method. And the thermal properties of the cured epoxy resin were investigated with the thermo-gravimetric analysis (TGA) and dynamic mechanical analysis (DMA). Besides, the toughness was characterized with the impact strength tested by charpy impact testing. The results indicated that the modification would improve the curing reactions, and the curing temperatures were decreased with the increasing content of DFA. The thermal properties were not influenced obviously, and the toughness could be improved when the epoxy resin was modified with DFA.展开更多
To prepare and characterize the ferromagnetic fluid of Fe304 modified by carboxyl PEG (FF/carboxyl PEG) for hyperthermia of tumor, the magnetic nanoparticles (NPs) of Fe304 were prepared by chemical co-precipitati...To prepare and characterize the ferromagnetic fluid of Fe304 modified by carboxyl PEG (FF/carboxyl PEG) for hyperthermia of tumor, the magnetic nanoparticles (NPs) of Fe304 were prepared by chemical co-precipitation method, and then modified with carboxyl PEG. The iron content of FFs was determined by spectrophotometric method using o-phenanthroline. The stability of FF/carboxyl PEG was assessed by the sedimentation method. FF/carboxyl PEG was characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), infrared spectrometry (IR) and vibrating sample magnetometer (VSM). Heating effect of FF/carboxyl PEG was measured in an alternating magnetic field in vitro. The stability of FF/carboxyl PEG was much better than that of unmodified ferromagnetic fluid. FF/carboxyl PEG was proved to be composed of Fe304 by both XRD and IR. TEM showed that the ferromagnetic particles were well-dispersed. The average particle size was calculated as 5 nm by XRD. The saturation magnetization and residual magnetization of FF/carboxyl PEG were 47.01 and 3.41 emu/g, respectively. The coercive force was 6.70e. The specific absorption rate (SAR) of the FF/carboxyl PEG was 63.0 W/g[Fe]. The FF/carboxyl PEG shows the promise for hyperthermia of tumor.展开更多
ZnO hierarchical aggregates have been successfully synthesized by solvothermal methods through reaction of zinc acetate and potassium hydroxide in methanol solution. The shapes of the aggregates were controlled by var...ZnO hierarchical aggregates have been successfully synthesized by solvothermal methods through reaction of zinc acetate and potassium hydroxide in methanol solution. The shapes of the aggregates were controlled by varying the ratio of Zn2~ and OH- ions in the reaction system, while the size can be tuned from 2μm to 100 nm. Oriented attachment was found to be the main mechanism of the three-dimensional assembly of small ZnO nanocrystallites into large aggregates. The performance of these aggregates in dye-sensitized solar cells (DSCs) indicated that hierarchical structured photoelectrodes can increase energy conversion efficiency of DSCs effectively when the sizes of aggregates match the wavelengths of visible light.展开更多
文摘Aim To prepare and characterize ferromagnetic fluids for hyperthermia of tumor. Methods Ferromagnetic fluids (FFs) of magnetite (Fe3O4) was prepared in the presence of polyethylene glycol (PEG-6000) by chemical precipitation method. The iron content of the FFs was determined by spectrophotometric method using o-phenanthroline. The FFs/PEG-6000 was characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD), infrared spectrometry (IR), and vibrating sample magnetometer (VSM). Heating effects of the FFs was measured in an alternating magnetic field in vitro. The hyperthermia of FFs in a rabbit was performed. Results The FFs/PEG-6000 was proved to be composed of Fe3O4 by XRD and IR. TEM showed that the ferromagnetic particles appeared to be almost spherical and dispersed well The average particle size was 13.3 ± 3.8 nm by XRD. The saturation magnetization and residual magnetization of the FFs were 23.39 A/m (1.556 emu/g) and 0.56 A/m (0.02604 emu/g), respectively. The coercive force was 12 Oe. The specific absorption rate (SAR) of FFs was 69 ± 10W/g [Fe]. After direct injection of FFs to hepatic VX2 carcinoma of a rabbit, the temperature in the core of the tumor was between 41 - 46 ℃ in an alternating magnetic field. Conclusion FFs/PEG-6000 was expected to be useful in hyperthermia of tumor.
基金Supported by the National NSF of China (No. 20271050 20271021 and 20333070) and the NSF of Fujian province (No.210029)
文摘The title compound [H4As8V14O42(H2O)]6H2O 1 has been synthesized and characterized by elemental analysis, IR, and single-crystal X-ray diffraction analysis. It crystallizes in trigonal, space group R3c with a = b = 36.447(6), c = 21.485(5) ? V = 24717(8) 3, Z = 18, Mr = 2114.66, Dc = 2.557g/cm3, F(000) = 17928, m = 7.149 mm-1, R = 0.0792 and wR = 0.1265. The [H4As8V14O42- (H2O)] cluster consists of fourteen VO5 square pyramids linked by four As2O5 handle-like units.
基金Shanghai Leading Academic Discipline Project,China(No.s30107)the Program for Professor of Special Appointment(Eastern Scholar)at Shanghai Institutions of Higher Learning,Chinathe Project of Shanghai Science and Technology Committee,China(No.12520500300)
文摘In order to improve the toughness of the cured aromatic tetrafunctional epoxy resins, a dlmer rarboxylic acid named dlmer fatty acid (DFA) was used to modify an aromatic tetrafunctional epoxy, N, N, N', N'-tetraglycidyl-2,2-bis [ 4-( 4-aminophcuoxy ) phenyl ] propane (TGBAPP). The curing behaviors of DFA- TGBAPP/MNA ( methyl nadic anhydride) systems were studied by differential scanning calorimetry (DSC) method. And the thermal properties of the cured epoxy resin were investigated with the thermo-gravimetric analysis (TGA) and dynamic mechanical analysis (DMA). Besides, the toughness was characterized with the impact strength tested by charpy impact testing. The results indicated that the modification would improve the curing reactions, and the curing temperatures were decreased with the increasing content of DFA. The thermal properties were not influenced obviously, and the toughness could be improved when the epoxy resin was modified with DFA.
文摘To prepare and characterize the ferromagnetic fluid of Fe304 modified by carboxyl PEG (FF/carboxyl PEG) for hyperthermia of tumor, the magnetic nanoparticles (NPs) of Fe304 were prepared by chemical co-precipitation method, and then modified with carboxyl PEG. The iron content of FFs was determined by spectrophotometric method using o-phenanthroline. The stability of FF/carboxyl PEG was assessed by the sedimentation method. FF/carboxyl PEG was characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), infrared spectrometry (IR) and vibrating sample magnetometer (VSM). Heating effect of FF/carboxyl PEG was measured in an alternating magnetic field in vitro. The stability of FF/carboxyl PEG was much better than that of unmodified ferromagnetic fluid. FF/carboxyl PEG was proved to be composed of Fe304 by both XRD and IR. TEM showed that the ferromagnetic particles were well-dispersed. The average particle size was calculated as 5 nm by XRD. The saturation magnetization and residual magnetization of FF/carboxyl PEG were 47.01 and 3.41 emu/g, respectively. The coercive force was 6.70e. The specific absorption rate (SAR) of the FF/carboxyl PEG was 63.0 W/g[Fe]. The FF/carboxyl PEG shows the promise for hyperthermia of tumor.
文摘ZnO hierarchical aggregates have been successfully synthesized by solvothermal methods through reaction of zinc acetate and potassium hydroxide in methanol solution. The shapes of the aggregates were controlled by varying the ratio of Zn2~ and OH- ions in the reaction system, while the size can be tuned from 2μm to 100 nm. Oriented attachment was found to be the main mechanism of the three-dimensional assembly of small ZnO nanocrystallites into large aggregates. The performance of these aggregates in dye-sensitized solar cells (DSCs) indicated that hierarchical structured photoelectrodes can increase energy conversion efficiency of DSCs effectively when the sizes of aggregates match the wavelengths of visible light.