CO2 concentrations at different heights in a broadleaved/Korean forest (with a mean height of 26 m) were measured with infrared gas analyzer IRGA (model 2250D, LI-COR Inc. and LI-COR, 820) from Aug. to Oct. of 1999, A...CO2 concentrations at different heights in a broadleaved/Korean forest (with a mean height of 26 m) were measured with infrared gas analyzer IRGA (model 2250D, LI-COR Inc. and LI-COR, 820) from Aug. to Oct. of 1999, Apr. to Jul. of 2000, and from Aug. 2002 to Sept. 2003. Based on the collected dada, the diurnal and seasonal dynamics of profiles and storage of carbon dioxide in the forest were analyzed. The diurnal CO2 profiles showed that the vertical distribution of CO2 concentration were different for daytime and nighttime, and the CO2 concentration was highest close to forest floor, no matter at daytime and nighttime. The seasonal profiles of CO2 showed that stratification in the canopy was evident during growth season. CO2 concentrations at different heights (60 m to 2.5 m) had a little change in March, with a difference of 10 mmolmol-1, but had a significant change in July, with a difference of 60 mmolmol-1. In July, there also existed a greater gradient of CO2 concentrations at canopy (22, 26 and 32 m), with a difference of 8 mmolmol-1. The calculated total storage (ΔC/Δt ) of CO2 in the air column with height of 40 m beneath eddy covariance instrument was negative, and made a little contribution to NEE.展开更多
Aboveground vertical profiles of N2O concentrations were measured with in two natural coniferous-deciduous mixed forests of 1998 and 1999 in Changbai M ountain. Significant high N2O concentrations were found in six pr...Aboveground vertical profiles of N2O concentrations were measured with in two natural coniferous-deciduous mixed forests of 1998 and 1999 in Changbai M ountain. Significant high N2O concentrations were found in six profiles out of t welve profiles. The results showed that high concentrations were 3.03% to 64.9% higher than the "normal concentrations" in these six profiles. Differences betwe en the high concentrations and the "normal concentrations" were statistically si gnificant. The simultaneous occurrence of high concentrations at/nearby the cano py height and normal concentrations at the trunk space height indicated an efflu x of N2O from foliage to atmosphere. This study afforded evidence supporting tha t plant per se, besides forest soil, was an important source of atmospheric N2O in a forest ecosystem.展开更多
An effective method for preventing spontaneous combustion of coal stockpiles on the ground is to control the air-flow in loose coal. In order to determine and predict accurately oxygen concentrations and temperatures ...An effective method for preventing spontaneous combustion of coal stockpiles on the ground is to control the air-flow in loose coal. In order to determine and predict accurately oxygen concentrations and temperatures within coal stockpiles, it is vital to obtain information of self-heating conditions and tendencies of spontaneous coal combustion. For laboratory conditions, we designed our own experimental equipment composed of a control-heating system, a coal column and an oxygen concentration and temperature monitoring system, for simulation of spontaneous combustion of block coal (13-25 mm) covered with fine coal (0-3 mm). A BP artificial neural network (ANN) with 150 training samples was gradually established over the course of our experiment. Heating time, relative position of measuring points, the ratio of fine coal thickness, artificial density, voidage and activation energy were selected as input variables and oxygen concentration and temperature of coal column as output variables. Then our trained network was applied to predict the trend on the untried experimental data. The results show that the oxygen concentration in the coal column could be reduced below the minimum still able to induce spontaneous combustion of coal - 6% by covering the coal pile with fine coal, which would meet the requirement to prevent spontaneous combustion of coal stockpiles. Based on the prediction of this ANN, the average errors of oxygen concentration and temperature were respectively 0.5% and 7 ℃, which meet actual tolerances. The implementation of the method would provide a practical guide in understanding the course of self-heating and spontaneous combustion of coal stockpiles.展开更多
Forced aeration is an effective way to accelerate the heap bioleaching process.To reveal the effects of different irrigation and aeration combinations on bioleaching performance of copper sulfides,numerical simulation...Forced aeration is an effective way to accelerate the heap bioleaching process.To reveal the effects of different irrigation and aeration combinations on bioleaching performance of copper sulfides,numerical simulations with COMSOL were carried out.Results showed the oxygen concentration is the highest at the bottom with forced aeration,the airflow transports spherically from the aeration pipeline to the slope,and the horizontal diffusion distance is further than vertical value.When the irrigation-to-aeration ratio is higher,the average heap temperatures are mainly decided by aeration rates;otherwise,temperature distributions are the equilibrium of mineral reaction heat,the livixiant driven heat and the airflow driven heat.When the aeration rate is higher than 0.90 m3/(m2·h),oxygen concentration is no longer a limiting factor for mineral dissolution.Additionally,on the premise of sufficient oxygen supply,Cu recovery rate is higher at the bottom with low irrigation rate;while it is higher at upper regions with high irrigation rate.The numerical analysis uncovered some insights into the dynamics and thermodynamics rules in bioleaching of copper sulfides with forced aeration.展开更多
Aboveground vertical profiles of N2O concentrations were measured with in two natural coniferous-deciduous mixed forests of 1998 and 1999 in Changbai M ountain. Significant high N2O concentrations were found in six pr...Aboveground vertical profiles of N2O concentrations were measured with in two natural coniferous-deciduous mixed forests of 1998 and 1999 in Changbai M ountain. Significant high N2O concentrations were found in six profiles out of t welve profiles. The results showed that high concentrations were 3.03% to 64.9% higher than the 'normal concentrations' in these six profiles. Differences betwe en the high concentrations and the 'normal concentrations' were statistically si gnificant. The simultaneous occurrence of high concentrations at/nearby the cano py height and normal concentrations at the trunk space height indicated an efflu x of N2O from foliage to atmosphere. This study afforded evidence supporting tha t plant per se, besides forest soil, was an important source of atmospheric N2O in a forest ecosystem.展开更多
基金This study is supported by The Development Plan of State Key Fundamental Research of China (973) (contract No. 2002CB412502),by Knowledge Innovation Project of CAS (KZCX1-SW-01-03) and by Natural Science Foundation of China (30170167).
文摘CO2 concentrations at different heights in a broadleaved/Korean forest (with a mean height of 26 m) were measured with infrared gas analyzer IRGA (model 2250D, LI-COR Inc. and LI-COR, 820) from Aug. to Oct. of 1999, Apr. to Jul. of 2000, and from Aug. 2002 to Sept. 2003. Based on the collected dada, the diurnal and seasonal dynamics of profiles and storage of carbon dioxide in the forest were analyzed. The diurnal CO2 profiles showed that the vertical distribution of CO2 concentration were different for daytime and nighttime, and the CO2 concentration was highest close to forest floor, no matter at daytime and nighttime. The seasonal profiles of CO2 showed that stratification in the canopy was evident during growth season. CO2 concentrations at different heights (60 m to 2.5 m) had a little change in March, with a difference of 10 mmolmol-1, but had a significant change in July, with a difference of 60 mmolmol-1. In July, there also existed a greater gradient of CO2 concentrations at canopy (22, 26 and 32 m), with a difference of 8 mmolmol-1. The calculated total storage (ΔC/Δt ) of CO2 in the air column with height of 40 m beneath eddy covariance instrument was negative, and made a little contribution to NEE.
基金Hundred Scientists" Project of Ch inese Academy of Sciences.
文摘Aboveground vertical profiles of N2O concentrations were measured with in two natural coniferous-deciduous mixed forests of 1998 and 1999 in Changbai M ountain. Significant high N2O concentrations were found in six profiles out of t welve profiles. The results showed that high concentrations were 3.03% to 64.9% higher than the "normal concentrations" in these six profiles. Differences betwe en the high concentrations and the "normal concentrations" were statistically si gnificant. The simultaneous occurrence of high concentrations at/nearby the cano py height and normal concentrations at the trunk space height indicated an efflu x of N2O from foliage to atmosphere. This study afforded evidence supporting tha t plant per se, besides forest soil, was an important source of atmospheric N2O in a forest ecosystem.
文摘An effective method for preventing spontaneous combustion of coal stockpiles on the ground is to control the air-flow in loose coal. In order to determine and predict accurately oxygen concentrations and temperatures within coal stockpiles, it is vital to obtain information of self-heating conditions and tendencies of spontaneous coal combustion. For laboratory conditions, we designed our own experimental equipment composed of a control-heating system, a coal column and an oxygen concentration and temperature monitoring system, for simulation of spontaneous combustion of block coal (13-25 mm) covered with fine coal (0-3 mm). A BP artificial neural network (ANN) with 150 training samples was gradually established over the course of our experiment. Heating time, relative position of measuring points, the ratio of fine coal thickness, artificial density, voidage and activation energy were selected as input variables and oxygen concentration and temperature of coal column as output variables. Then our trained network was applied to predict the trend on the untried experimental data. The results show that the oxygen concentration in the coal column could be reduced below the minimum still able to induce spontaneous combustion of coal - 6% by covering the coal pile with fine coal, which would meet the requirement to prevent spontaneous combustion of coal stockpiles. Based on the prediction of this ANN, the average errors of oxygen concentration and temperature were respectively 0.5% and 7 ℃, which meet actual tolerances. The implementation of the method would provide a practical guide in understanding the course of self-heating and spontaneous combustion of coal stockpiles.
基金Projects(51804079,51804121)supported by the National Natural Science Foundation of ChinaProject(2019J05039)supported by Natural Science Foundation of Fujian Province,ChinaProject(2019T034)supported by Fuzhou University Testing Fund of Precious Apparatus,China。
文摘Forced aeration is an effective way to accelerate the heap bioleaching process.To reveal the effects of different irrigation and aeration combinations on bioleaching performance of copper sulfides,numerical simulations with COMSOL were carried out.Results showed the oxygen concentration is the highest at the bottom with forced aeration,the airflow transports spherically from the aeration pipeline to the slope,and the horizontal diffusion distance is further than vertical value.When the irrigation-to-aeration ratio is higher,the average heap temperatures are mainly decided by aeration rates;otherwise,temperature distributions are the equilibrium of mineral reaction heat,the livixiant driven heat and the airflow driven heat.When the aeration rate is higher than 0.90 m3/(m2·h),oxygen concentration is no longer a limiting factor for mineral dissolution.Additionally,on the premise of sufficient oxygen supply,Cu recovery rate is higher at the bottom with low irrigation rate;while it is higher at upper regions with high irrigation rate.The numerical analysis uncovered some insights into the dynamics and thermodynamics rules in bioleaching of copper sulfides with forced aeration.
基金Hundred Scientists' Project of Ch inese Academy of Sciences.
文摘Aboveground vertical profiles of N2O concentrations were measured with in two natural coniferous-deciduous mixed forests of 1998 and 1999 in Changbai M ountain. Significant high N2O concentrations were found in six profiles out of t welve profiles. The results showed that high concentrations were 3.03% to 64.9% higher than the 'normal concentrations' in these six profiles. Differences betwe en the high concentrations and the 'normal concentrations' were statistically si gnificant. The simultaneous occurrence of high concentrations at/nearby the cano py height and normal concentrations at the trunk space height indicated an efflu x of N2O from foliage to atmosphere. This study afforded evidence supporting tha t plant per se, besides forest soil, was an important source of atmospheric N2O in a forest ecosystem.