本文基于密度泛函理论,研究了在BaTiO3晶体中不同电荷态(0, +1, +2)氧空位的缺陷形成能。采用杂化密度泛函修正了DFT-GGA带边问题。使用FNV方法对缺陷形成能量进行修正。给出了包含电子–声子耦合的F中心和F+中心的光谱的比较准确描述...本文基于密度泛函理论,研究了在BaTiO3晶体中不同电荷态(0, +1, +2)氧空位的缺陷形成能。采用杂化密度泛函修正了DFT-GGA带边问题。使用FNV方法对缺陷形成能量进行修正。给出了包含电子–声子耦合的F中心和F+中心的光谱的比较准确描述。结果表明:氧空位是浅施主能级,是该材料n型导电的主要原因。根据本文的计算结果,F心吸收峰位于2.85 eV (435 nm),F+心吸收峰则位于2.80 eV (443 nm)。F心的发射峰位于2.83 eV (438 nm),F+心的发射峰位于2.78 eV (446 nm)。计算结果与实验结果基本一致。结果表明,这些方法对点缺陷光谱的计算是可行的。该方法的主要优点是计算量比较低,远远低于多体微扰理论GW方法中的计算量。本文的方法在满足计算精度的条件下,解决了计算量巨大的问题。为研究点缺陷的光谱性质提供了有效途径。展开更多
基金supported by the National Natural Science Foundation of China(No.22038011,No.22078257,No.22108213,No.52176142)the China Postdoctoral Science Foundation(2021M692548)+1 种基金the Joint Fund of the Yulin University and the Dalian National Laboratory for Clean Energy(Grant YLU-DNL Fund 2022001)the Young Talent Support Plan of Shaanxi Province。
文摘本文基于密度泛函理论,研究了在BaTiO3晶体中不同电荷态(0, +1, +2)氧空位的缺陷形成能。采用杂化密度泛函修正了DFT-GGA带边问题。使用FNV方法对缺陷形成能量进行修正。给出了包含电子–声子耦合的F中心和F+中心的光谱的比较准确描述。结果表明:氧空位是浅施主能级,是该材料n型导电的主要原因。根据本文的计算结果,F心吸收峰位于2.85 eV (435 nm),F+心吸收峰则位于2.80 eV (443 nm)。F心的发射峰位于2.83 eV (438 nm),F+心的发射峰位于2.78 eV (446 nm)。计算结果与实验结果基本一致。结果表明,这些方法对点缺陷光谱的计算是可行的。该方法的主要优点是计算量比较低,远远低于多体微扰理论GW方法中的计算量。本文的方法在满足计算精度的条件下,解决了计算量巨大的问题。为研究点缺陷的光谱性质提供了有效途径。