Homogeneous(unseeded)precipitation of magnesium carbonate hydrates by the reaction of MgCl2 with Na2CO3 in supersaturated solutions between 273 and 363K was investigated.The compositions,morphologies and filtration ch...Homogeneous(unseeded)precipitation of magnesium carbonate hydrates by the reaction of MgCl2 with Na2CO3 in supersaturated solutions between 273 and 363K was investigated.The compositions,morphologies and filtration characteristics of the precipitates were studied in detail.The magnesium carbonate hydrates obtained at 313K and in the range of 343-363K showed good morphologies and filtration characteristics.Magnesium oxides(MgO)with high purity(97.6%-99.4%)were obtained by calcining magnesium carbonate hydrates at 1073K.展开更多
The extraction of potassium from K-feldspar via a calcium chloride calcination route was studied with a focus on the effects of the calcination atmosphere, calcination temperature and time, mass ratio of CaCl2 to K-fe...The extraction of potassium from K-feldspar via a calcium chloride calcination route was studied with a focus on the effects of the calcination atmosphere, calcination temperature and time, mass ratio of CaCl2 to K-feldspar ore and particle size of the K-feldspar ore. The results demonstrated that a competing high-temperature hydrolysis reaction of calcium chloride with moisture in a damp atmosphere occurred concurrently with the conversion reaction of K-feldspar with CaCl2, thus reducing the amount of potassium extracted. The conversion reaction started at approximately 600 °C and accelerated with increasing temperature. When the temperature rose above 900 °C, the extraction of potassium gradually decreased due to the volatilization of the product, KCl.As much as approximately 41% of the potassium was volatilized in 40 min at 1100 °C. The mass ratio of CaCl2/K-feldspar ore significantly affected the extraction. At a mass ratio of 1.15 and 900 °C, the potassium extraction reached 91% in 40 min, while the extraction was reduced to only 22% at the theoretical mass ratio of 0.2. Optimal process conditions are as follows: ore particle size of 50–75 μm, tablet forming pressure of 3 MPa, dry nitrogen atmosphere, mass ratio of CaCl2/ore 1.15:1, calcination temperature of 900 °C, and calcination time of 40 min.The XRD analysis revealed that a complex phase transition of the product SiO2 was also accompanied by the conversion reaction of K-feldspar/CaCl2. The SiO2 product formed at the initial stage was in the quartz phase at 900 °C and was gradually transformed into cristobalite after 30 min.展开更多
基金Supported by the National Natural Science Foundation of China (20876161) and the National Basic Research Program of China (2007CB613501, 2009CB219904).
文摘Homogeneous(unseeded)precipitation of magnesium carbonate hydrates by the reaction of MgCl2 with Na2CO3 in supersaturated solutions between 273 and 363K was investigated.The compositions,morphologies and filtration characteristics of the precipitates were studied in detail.The magnesium carbonate hydrates obtained at 313K and in the range of 343-363K showed good morphologies and filtration characteristics.Magnesium oxides(MgO)with high purity(97.6%-99.4%)were obtained by calcining magnesium carbonate hydrates at 1073K.
基金Supported by the Ministry of Science and Technology(State Key Research Plan2013BAC12B03)the National Natural Science Foundation of China(21236004,21336004)
文摘The extraction of potassium from K-feldspar via a calcium chloride calcination route was studied with a focus on the effects of the calcination atmosphere, calcination temperature and time, mass ratio of CaCl2 to K-feldspar ore and particle size of the K-feldspar ore. The results demonstrated that a competing high-temperature hydrolysis reaction of calcium chloride with moisture in a damp atmosphere occurred concurrently with the conversion reaction of K-feldspar with CaCl2, thus reducing the amount of potassium extracted. The conversion reaction started at approximately 600 °C and accelerated with increasing temperature. When the temperature rose above 900 °C, the extraction of potassium gradually decreased due to the volatilization of the product, KCl.As much as approximately 41% of the potassium was volatilized in 40 min at 1100 °C. The mass ratio of CaCl2/K-feldspar ore significantly affected the extraction. At a mass ratio of 1.15 and 900 °C, the potassium extraction reached 91% in 40 min, while the extraction was reduced to only 22% at the theoretical mass ratio of 0.2. Optimal process conditions are as follows: ore particle size of 50–75 μm, tablet forming pressure of 3 MPa, dry nitrogen atmosphere, mass ratio of CaCl2/ore 1.15:1, calcination temperature of 900 °C, and calcination time of 40 min.The XRD analysis revealed that a complex phase transition of the product SiO2 was also accompanied by the conversion reaction of K-feldspar/CaCl2. The SiO2 product formed at the initial stage was in the quartz phase at 900 °C and was gradually transformed into cristobalite after 30 min.